# FCOS.Pytorch **Repository Path**: zhifeiss/FCOS.Pytorch ## Basic Information - **Project Name**: FCOS.Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-08-03 - **Last Updated**: 2021-12-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## FCOS: Fully Convolutional One-Stage Object Detection #### implemented by pytorch1.0 ### Updates * ctr. on reg * giou loss * ctr. sampling ### TODO * normalizing the regression targets ### Requirements * opencv-python * pytorch >= 1.2 * torchvision >= 0.4. ### Anchor Points Let's say the white boxes are the gt boxes, the points of different colors represent the sampling points of different feature layers while applying ctr-sampling. ![](assets/4.jpg) ### Results Train on 2 1080Ti, 3 imgs for each gpu, init lr=1e-5 cosine decays to 1e-6, but performance is not good on VOC07test. Maybe should remove centerness head while applying central sampling. ![test1](assets/tensorboard.jpg) ![test2](assets/2007_000793.jpg) ![test3](assets/2007_001430.jpg) ### Pretrained weights Due to computational resource constraints, I was unable to fully train the model on the COCO dataset. I have converted the [official pre-training model weights FCOS_R_50_FPN_1x](https://cloudstor.aarnet.edu.au/plus/s/dDeDPBLEAt19Xrl/download) into my own. The converted weights is avaliable [Baidu driver link](https://pan.baidu.com/s/14KbDMisTksx_m91uMt-LIA), password: rpni The official implementation of preprocessing(pixel is not normalized to 0-1 and input img follows BGR fomat ) is a little different from mine. ### Other some excellent work based on this repo: [FCOS-Pytorch-37.2AP](https://github.com/ChingHo97/FCOS-PyTorch-37.2AP) [FCOS_DET_MASK](https://github.com/2anchao/FCOS_DET_MASK)