# dgrec-python **Repository Path**: vvvvweivv/dgrec-python ## Basic Information - **Project Name**: dgrec-python - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-14 - **Last Updated**: 2024-03-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DGRec A PyTorch and DGL implementation for the WSDM 2023 paper below: [DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation](https://arxiv.org/pdf/2211.10486.pdf) Environment DGL version 1.0.1 Pytorch version 1.12.1 ## Running ``python main.py`` Then you can get similar result on TaoBao dataset as illustrated in the paper. You can check different hyper-parameters in `utils/parser.py` ## Dataset Format of train.txt val.txt test.txt: UserID,ItemID. Format of item_category.txt: ItemID,CategoryID If you want to change to your own dataset. Format your dataset in a folder as in datasets/Beauty, and specify your folder name in --dataset argument. ## Citation If you use our code, please cite the paper below: ```bibtex @inproceedings{yang2023dgrec, title={DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation}, author={Yang, Liangwei and Wang, Shengjie and Tao, Yunzhe and Sun, Jiankai and Liu, Xiaolong and Yu, Philip S and Wang, Taiqing}, booktitle={Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining}, pages={661--669}, year={2023} } ```