# GraphSTONE **Repository Path**: sakura_cy/GraphSTONE ## Basic Information - **Project Name**: GraphSTONE - **Description**: An implementation of "Graph Structural-topic Neural Network" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-06 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # GraphSTONE A TensorFlow implementation of GraphSTONE, as described in our paper: > Graph Structural-topic Neural Network (KDD 2020, Research Track) See our [Paper](http://arxiv.org/abs/2006.14278), and [Slides](https://github.com/YimiAChack/Files/blob/master/GraphSTONE%20slides.pdf). #### How to Use `python main.py` #### Dependencies Tensorflow 1.10.0, Networkx 1.11, Python 3 #### Data We provide cora and ppi datasets as examples under `data/cora` and `data/ppi`. Note that the `data/dataset_name/features.npy` has undergone a dimensionality reduction via PCA, and is not identical to the original cora features. #### Parameters For parameter settings, please see `conf.json`. Some parameter definitions: | Name | Default | Note | | :---------------------- | ------: | :---------------------------------: | | dataset | cora | dataset name | | input_node_feature | True | input original node features ("True") or not ("False")| | PreProcess/number_paths | 50 | number of paths from a center node, for generating "word" and "document" concepts on graphs | | PreProcess/path_length | 15 | max length of random walks from a center node, for generating "word" and "document" concepts on graphs | | TopicModel/number_topic | 5 | number of structural-topics | | TopicModel/max_features_dim | 2500 | max topic_features (for the input of structural-topic GNN) dimension | | TopicGCN/max_training_steps | 5000 | max steps for training | #### Acknowledgments Certain parts of this project are partially derived from [GraLSP](https://github.com/KL4805/GRALSP) and [AnchorRecovery](https://github.com/CatalinVoss/anchor-baggage/tree/master/anchor-word-recovery).