# C2RF **Repository Path**: qazYP/C2RF ## Basic Information - **Project Name**: C2RF - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-05-06 - **Last Updated**: 2025-05-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # C2RF This is official Pytorch implementation of "**C2RF: Bridging Multi-modal Image Registration and Fusion via Commonality Mining and Contrastive Learning**". Please click [here](https://link.springer.com/article/10.1007/s11263-025-02427-1) to download this paper. ## 1. Recommended Environment - [ ] torch 1.10.2+cu102 - [ ] torchvision 0.8.2 - [ ] kornia 0.5.2 ## 2. Framework The framework of the proposed C2RF for multi-modal image registration and fusion. ![The framework of the proposed C2RF for multi-modal image registration and fusion.](https://github.com/QinglongYan-hub/C2RF/blob/main/C2RF/Framework.png) ## 3. Pretrained Weights Please download the pretrained weights at the link below, and then place them into the folder ./checkpoint/ - The pretrained weights for the Roadscene dataset is at [Google Drive](https://drive.google.com/drive/folders/1wOSVg9CsqZBJkHWYMGD1kCER9tThSxYk?usp=sharing). - The pretrained weights for the PET-MRI dataset is at [Google Drive](https://drive.google.com/drive/folders/1M99NDvcnk71iZUVC6BlYyRvAKIZlUIK6?usp=sharing). ## 4. To Test ### Registration and Fusion #### RoadScene dataset python test.py --dataset=RoadScene #### PET-MRI dataset python test.py --dataset=PET-MRI ## 5. To Train ### Training the fusion model #### RoadScene dataset python train_Fu.py --dataset=RoadScene #### PET-MRI dataset python train_Fu.py --dataset=PET-MRI ### Training the registration model #### RoadScene dataset python train_Reg.py --dataset=RoadScene #### PET-MRI dataset python train_Reg.py --dataset=PET-MRI