# Matterport **Repository Path**: nashzzhou/Matterport ## Basic Information - **Project Name**: Matterport - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-07-15 - **Last Updated**: 2021-03-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Matterport3D ![Matterport3d](img/teaser.jpg) The Matterport3D V1.0 dataset contains data captured throughout 90 properties with a Matterport Pro Camera. This repository includes the raw data for the dataset plus derived data, annotated data, and scripts/models for several scene understanding tasks. Visit the main [website](https://niessner.github.io/Matterport) for updates and to browse the data. ## Paper [**Matterport3D: Learning from RGB-D Data in Indoor Environments**](https://arxiv.org/abs/1709.06158) If you use the Matterport3D data or code please cite: ``` @article{Matterport3D, title={{Matterport3D}: Learning from {RGB-D} Data in Indoor Environments}, author={Chang, Angel and Dai, Angela and Funkhouser, Thomas and Halber, Maciej and Niessner, Matthias and Savva, Manolis and Song, Shuran and Zeng, Andy and Zhang, Yinda}, journal={International Conference on 3D Vision (3DV)}, year={2017} } ``` ## Data The dataset consists of several types of annotations: color and depth images, camera poses, textured 3D meshes, building floor plans and region annotations, object instance semantic annotations. For details see the [data organization](data_organization.md) document. To download the dataset, you must indicate that you agree to the terms of use by signing the [Terms of Use](http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf) agreement form and sending it to: [matterport3d@googlegroups.com](mailto:matterport3d@googlegroups.com). We will then provide download access to the dataset. ## Benchmark tasks Using the Matterport3D data, we present several benchmark tasks: image keypoint matching, view overlap prediction, surface normal estimation, region type classification, and semantic voxel labeling. See the [tasks](tasks) directory for details. ## Tools We provide code for loading and viewing the data. See the [code](code) directory for details. ## License The data is released under the [Matterport3D Terms of Use](http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf), and the code is released under the MIT license.