# smart_intent **Repository Path**: mirrors_mozilla/smart_intent ## Basic Information - **Project Name**: smart_intent - **Description**: queries to intent - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-30 - **Last Updated**: 2026-02-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## smart_intent Classify query to various intents as below 1) `information_intent`: intention to learn more about something. Eg. what is programming?, How does docking station work ? 2) `yelp_intent`: intention to look for services/local businesses. Eg. italian food near me, floor repair cost 3) `navigation_intent`: intention to navigate from search to the website. Eg. email login, bank branch routing number 4) `travel_intent`: intention to travel. Eg. hotels in Paris, cruise trip to carribean islands 5) `purchase_intent`: intention to purchase products. Eg. price of us open tennis tickets, buy iphone 10 6) `weather_intent`: to know the weather or temperature of a city. Eg. weather in Miami, temperature in Seattle 7) `translation_intent`: to translate from and to various languages. Eg. what is hello in spanish, translate hi to japanese 8) `unknown`: when the intent is inconclusive ## Steps to install the App 1) clone the repo 2) python -m venv venv 3) source /venv/bin/activate 4) python -m pip install -r requirements 5) streamlit run src/intent_app.py image ## steps to run the sample intent inference steps 1 - 4 from above 5) python src/infer_intent.py ## steps to train intent classifier model `data preparation`: ``` python src/data_prep_intent.py ``` `intent model training`: ``` python src/train_intent.py ``` (optional) `upload the model to hub`: ``` python src/upload_intent.py ``` ## steps to train NER model `data preparation`: ``` python src/data_prep_ner.py ``` `NER model training`: ``` python src/train_ner.py ``` (optional) `upload the model to hub`: ``` python src/upload_ner.py ``` Steps to quantize: ``` venv/bin/python convert.py --model_id Mozilla/mobilebert-uncased-finetuned-LoRA-intent-classifier --quantize --modes q4 q8 fp16 --task text-classification --output_parent_dir output_models venv/bin/python convert.py --model_id Mozilla/distilbert-uncased-NER-LoRA --quantize --modes q4 q8 fp16 --task token-classification --output_parent_dir output_models ```