# HNE **Repository Path**: mcdragon/HNE ## Basic Information - **Project Name**: HNE - **Description**: Heterogeneous Network Embedding: Survey, Benchmark, Evaluation, and Beyond - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-12 - **Last Updated**: 2021-09-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Heterogeneous Network Representation Learning: Benchmark with Data and Code ## Citation Please cite the following work if you find the data/code useful. ``` @article{yang2020heterogeneous, title={Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark}, author={Yang, Carl and Xiao, Yuxin and Zhang, Yu and Sun, Yizhou and Han, Jiawei}, journal={TKDE}, year={2020} } ``` ## Contact Please contact us if you have problems with the data/code, and also if you think your work is relevant but missing from the survey. Yuxin Xiao (yuxinx2@illinois.edu), Carl Yang (yangji9181@gmail.com) ## Guideline ### Stage 1: Data We provide 4 HIN benchmark datasets: ```DBLP```, ```Yelp```, ```Freebase```, and ```PubMed```. Each dataset contains: - 3 data files (```node.dat```, ```link.dat```, ```label.dat```); - 2 evaluation files (```link.dat.test```, ```label.dat.test```); - 2 description files (```meta.dat```, ```info.dat```); - 1 recording file (```record.dat```). Please refer to the ```Data``` folder for more details. ### Stage 2: Transform This stage transforms a dataset from its original format to the training input format. Users need to specify the targeting dataset, the targeting model, and the training settings. Please refer to the ```Transform``` folder for more details. ### Stage 3: Model We provide 13 HIN baseline implementaions: - 5 Proximity-Preserving Methods (```metapath2vec-ESim```, ```PTE```, ```HIN2Vec```, ```AspEm```, ```HEER```); - 4 Message-Passing Methods (```R-GCN```, ```HAN```, ```MAGNN```, ```HGT```); - 4 Relation-Learning Methods (```TransE```, ```DistMult```, ```ComplEx```, ```ConvE```). Please refer to the ```Model``` folder for more details. ### Stage 4: Evaluate This stage evaluates the output embeddings based on specific tasks. Users need to specify the targeting dataset, the targeting model, and the evaluation tasks. Please refer to the ```Evaluate``` folder for more details.