# DeepLearningTutorial **Repository Path**: lxb1226/DeepLearningTutorial ## Basic Information - **Project Name**: DeepLearningTutorial - **Description**: Talk is cheap,show me the code ! Deep Learning,Leaning deep,Have fun! - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-21 - **Last Updated**: 2021-07-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 【Github项目文档】DeepLearningTutorial项目说明 **Deep Learning,Leaning deep,Have fun!** # 介绍 如果你是深度学习/卷积神经网络的初学者,且对图像分类、目标检测、分割等CV相关领域感兴趣,请继续
**↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓**
刚刚入门DL,CV,CNN?或者了解各种理论后仍不知从何下手 ?是不是对于各个网络模型的代码实现一脸懵逼?如果是,那么这个项目就是为你准备的。**Talk is cheap,show me the code!本项目致力于图像分类网络(经典CNN)、目标检测、实例分割等一切CV相关领域的论文/网络解读 + 代码构建 + 模型训练**(在1.和2.部分);在第3.学习资源部分里分享深度学习,计算机视觉相关的文章、视频公开课、开源框架、项目和平台等和一切**深度学习相关的优秀资源**;第4部分是tensorflow和pytorch上的**公开数据集**
好东西要共享,Ideas worth spreading!项目不定期更新。
**目录如下:** - [介绍](https://github.com/Flowingsun007/DeepLearningTutorial#%E4%BB%8B%E7%BB%8D) - [1.Image Classification](https://github.com/Flowingsun007/DeepLearningTutorial#1image-classification) - [2.Object Detection](https://github.com/Flowingsun007/DeepLearningTutorial#2object-detection) - [2.1 One-stage](https://github.com/Flowingsun007/DeepLearningTutorial#21-one-stage) - [2.2 Two-stage](https://github.com/Flowingsun007/DeepLearningTutorial#22-two-stage) - [2.3 资源分享](https://github.com/Flowingsun007/DeepLearningTutorial#23-资源分享) - [2.3.1 知乎](https://github.com/Flowingsun007/DeepLearningTutorial#231-知乎) - [2.3.2 论文](https://github.com/Flowingsun007/DeepLearningTutorial#232-论文) - [2.3.3 代码实战](https://github.com/Flowingsun007/DeepLearningTutorial#233-代码实战) - [3.学习资源](https://github.com/Flowingsun007/DeepLearningTutorial#3%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%BA%90) - [3.1 机器学习](https://github.com/Flowingsun007/DeepLearningTutorial#31-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0) - [3.1.1 入门概念](https://github.com/Flowingsun007/DeepLearningTutorial#311-%E5%85%A5%E9%97%A8%E6%A6%82%E5%BF%B5) - [3.1.2 公开课](https://github.com/Flowingsun007/DeepLearningTutorial#312-%E5%85%AC%E5%BC%80%E8%AF%BE) - [3.1.3 学习资源](https://github.com/Flowingsun007/DeepLearningTutorial#313-%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%BA%90) - [3.1.4 竞赛平台](https://github.com/Flowingsun007/DeepLearningTutorial#314-%E7%AB%9E%E8%B5%9B%E5%B9%B3%E5%8F%B0) - [3.2 深度学习](https://github.com/Flowingsun007/DeepLearningTutorial#32-%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0) - [3.2.1 入门概念](https://github.com/Flowingsun007/DeepLearningTutorial#321-%E5%85%A5%E9%97%A8%E6%A6%82%E5%BF%B5) - [3.2.2 视频公开课](https://github.com/Flowingsun007/DeepLearningTutorial#322-%E8%A7%86%E9%A2%91%E5%85%AC%E5%BC%80%E8%AF%BE) - [3.2.3 学习资源](https://github.com/Flowingsun007/DeepLearningTutorial#323-%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%BA%90) - [书PDF](https://github.com/Flowingsun007/DeepLearningTutorial#书PDF) - [卷积神经网络](https://github.com/Flowingsun007/DeepLearningTutorial#卷积神经网络) - [3.2.4  开源工具](https://www.yuque.com/zhaoluyang/ai/vgn4pv#hgkH7) - [深度学习框架](https://github.com/Flowingsun007/DeepLearningTutorial#%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A1%86%E6%9E%B6) - [支撑工具](https://github.com/Flowingsun007/DeepLearningTutorial#%E6%94%AF%E6%92%91%E5%B7%A5%E5%85%B7) - [其他资源](https://github.com/Flowingsun007/DeepLearningTutorial#%E5%85%B6%E4%BB%96%E8%B5%84%E6%BA%90) - [3.3 计算机视觉](https://github.com/Flowingsun007/DeepLearningTutorial#33-%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%A7%86%E8%A7%89) - [3.3.1 入门概念](https://github.com/Flowingsun007/DeepLearningTutorial#331-%E5%85%A5%E9%97%A8%E6%A6%82%E5%BF%B5) - [3.3.2 公开课](https://github.com/Flowingsun007/DeepLearningTutorial#332-%E5%85%AC%E5%BC%80%E8%AF%BE) - [3.3.3 学习资源](https://github.com/Flowingsun007/DeepLearningTutorial#333-%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%BA%90) - [4.公开数据集](https://github.com/Flowingsun007/DeepLearningTutorial#4%E5%85%AC%E5%BC%80%E6%95%B0%E6%8D%AE%E9%9B%86) - [4.1 Pytorch提供](https://github.com/Flowingsun007/DeepLearningTutorial#41-Pytorch%E6%8F%90%E4%BE%9B) - [4.2 Tensorflow提供](https://github.com/Flowingsun007/DeepLearningTutorial#42-Tensorflow%E6%8F%90%E4%BE%9B) --- # 1.Image Classification | 项目✓ | 论文✓ | 网络✓ | 模型训练✓ | | :---: | :---: | :---: | :---: | | **LeNet** | [1998](https://ieeexplore.ieee.org/document/726791?reload=true&arnumber=726791)            [论文解读](https://zhuanlan.zhihu.com/p/34311419) | [LeNet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/LeNet.py) | [train_lenet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_lenet.py) | | **AlexNet** | [2012-PDF](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)    [论文解读](https://zhuanlan.zhihu.com/p/107660669) | [AlexNet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/AlexNet.py) | [train_alexnet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_alexnet.py) | | **Network in Network** | [2013-PDF](http://arxiv.org/pdf/1312.4400)    [论文解读](https://zhuanlan.zhihu.com/p/108235295) | [NetworkInNetwork.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/NetworkInNetwork.py) | [train_nin.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_nin.py) | | **VGG** | [2014-PDF](https://arxiv.org/pdf/1409.1556.pdf)    [论文解读](https://zhuanlan.zhihu.com/p/107884876) | [VGG.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/VGG.py) | [train_vgg.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_vgg.py) | | **GoogLeNet** | [2014-PDF](https://arxiv.org/pdf/1409.4842)    [论文解读](https://zhuanlan.zhihu.com/p/108414921) | [GoogLeNet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/GoogLenet.py) | [train_googlenet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_googlenet.py) | | **ResNet** | [2015-PDF](https://arxiv.org/pdf/1512.03385.pdf)    [论文解读](https://zhuanlan.zhihu.com/p/108708768) | [ResNet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/ResNet.py) | [train_resnet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_resnet.py) | | **DenseNet** | [2016-PDF](https://arxiv.org/pdf/1608.06993.pdf)    [论文解读](https://zhuanlan.zhihu.com/p/109269085) | [DenseNet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/DenseNet.py) | [train_densenet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_densenet.py) | | **ShuffleNet** | [2017-PDF](https://arxiv.org/pdf/1707.01083)    [论文解读](https://zhuanlan.zhihu.com/p/32304419) | [shuffleNet.py](https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/ShuffleNet.py) | ✗ | | **ShuffleNetV2** | [2018-PDF](https://arxiv.org/pdf/1807.11164)    [论文解读](https://zhuanlan.zhihu.com/p/48261931) | [ShuffleNetV2.py](https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/shufflenet_v2.py) | ✗ | | **MobileNet** | [V1](https://arxiv.org/abs/1704.04861)   [V2](https://128.84.21.199/pdf/1801.04381.pdf)   [V3](https://arxiv.org/pdf/1905.02244.pdf)  [论文解读](https://zhuanlan.zhihu.com/p/70703846) | [MobileNetV3.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/network/MobileNetV3.py) | [train_mobilenet.py](https://github.com/Flowingsun007/DeepLearningTutorial/blob/master/ImageClassification/train_mobilenet.py) | --- # 2.Object Detection ## 2.1 One-stage | 项目 | 论文 | 网络 | 模型训练 | | :---: | :---: | :---: | :---: | | **YoloV1** | [CVPR'16](http://arxiv.org/abs/1506.02640)  [论文解读](https://zhuanlan.zhihu.com/p/32525231) | ☐ | [官方-darknet](https://pjreddie.com/darknet/yolov1/)    [tensorflow](https://github.com/gliese581gg/YOLO_tensorflow) | | **SSD** | [ECCV'16](http://arxiv.org/abs/1512.02325)  [论文解读](https://zhuanlan.zhihu.com/p/33544892) | ☐ | [官方-caffe](https://github.com/weiliu89/caffe/tree/ssd) [tensorflow](https://github.com/balancap/SSD-Tensorflow) [pytorch](https://github.com/amdegroot/ssd.pytorch) | | **YoloV2** | [CVPR'17](https://arxiv.org/pdf/1612.08242.pdf)  [论文解读](https://zhuanlan.zhihu.com/p/35325884) | ☐ | [官方-darknet](https://pjreddie.com/darknet/yolov2/)    [tf](https://github.com/hizhangp/yolo_tensorflow)    [tf](https://github.com/KOD-Chen/YOLOv2-Tensorflow)   [pytorch](https://github.com/longcw/yolo2-pytorch) | | **RetinaNet** | [ICCV'17](https://arxiv.org/pdf/1708.02002.pdf)   [论文解读](https://zhuanlan.zhihu.com/p/68786098) | ☐ | [官方-keras](https://github.com/fizyr/keras-retinanet) | | **YoloV3** | [arXiV'18](https://arxiv.org/abs/1804.02767)  [论文翻译](https://zhuanlan.zhihu.com/p/37201615) | ☐ | [官方-darknet](https://github.com/pjreddie/darknet)    [tf](https://github.com/mystic123/tensorflow-yolo-v3)    [tf2.0](https://github.com/Flowingsun007/DeepLearningTutorial/tree/master/ObjectDetection/Yolo)    [pytorch](https://github.com/eriklindernoren/PyTorch-YOLOv3) | | **NAS-FPN** | [CVPR'19](https://arxiv.org/abs/1904.07392)  [论文解读](https://zhuanlan.zhihu.com/p/97230695) | ☐ | ☐ | | **EfficientNet** | [arXiV'19](https://arxiv.org/pdf/1911.09070v1.pdf)  [论文解读](https://zhuanlan.zhihu.com/p/104790514) | ☐ | [官方-tensorflow](https://github.com/google/automl/tree/master/efficientdet) | ## 2.2 Two-stage | 项目 | 论文 | 网络 | 模型训练 | | :---: | :---: | :---: | :---: | | **R-CNN** | [CVPR'14](https://arxiv.org/pdf/1311.2524.pdf)  [论文解读+翻译](https://zhuanlan.zhihu.com/p/115060099) | ☐ | [官方-caffe](https://github.com/rbgirshick/rcnn) | | **Fast R-CNN** | [ICCV'15](https://arxiv.org/pdf/1504.08083.pdf)   [解读1](https://zhuanlan.zhihu.com/p/79054417)  [解读2](https://zhuanlan.zhihu.com/p/60968116) | ☐ | [官方-caffe](https://github.com/rbgirshick/fast-rcnn) [tensorflow](https://github.com/zplizzi/tensorflow-fast-rcnn) | | **Faster R-CNN** | [NIPS'15](https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf)   [解读1](https://zhuanlan.zhihu.com/p/82185598)  [解读2](https://zhuanlan.zhihu.com/p/61202658) | ☐ | [官方-caffe](https://github.com/rbgirshick/py-faster-rcnn)   [tensorflow](https://github.com/endernewton/tf-faster-rcnn)   [pytorch](https://github.com/jwyang/faster-rcnn.pytorch) | | **FPN** | [CVPR'17](https://arxiv.org/abs/1612.03144)   [解读1](https://zhuanlan.zhihu.com/p/62604038) [解读2](https://zhuanlan.zhihu.com/p/62604038) | ☐ | [caffe](https://github.com/unsky/FPN) | | **Mask R-CNN** | [ICCV'17](http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf)    [解读1](https://zhuanlan.zhihu.com/p/37998710)  [解读2](https://zhuanlan.zhihu.com/p/65321082) | ☐ | [官方-caffe2](https://github.com/facebookresearch/Detectron)   [tf](https://github.com/matterport/Mask_RCNN)   [tf](https://github.com/CharlesShang/FastMaskRCNN)   [pytorch](https://github.com/multimodallearning/pytorch-mask-rcnn) | | **ThunderNet** | [ICCV'19](https://arxiv.org/pdf/1903.11752.pdf)    [论文解读](https://zhuanlan.zhihu.com/p/61113865) | ☐ | ☐ | ## 2.3 资源分享 ### 2.3.1 知乎 - [基于深度学习的目标检测算法综述(一)](https://zhuanlan.zhihu.com/p/40047760) - [基于深度学习的目标检测算法综述(二)](https://zhuanlan.zhihu.com/p/40020809) - [基于深度学习的目标检测算法综述(三)](https://zhuanlan.zhihu.com/p/40102001) - [干货 | 目标检测入门,看这篇就够了(已更完)](https://zhuanlan.zhihu.com/p/34142321) - [51 个深度学习目标检测模型汇总,论文、源码一应俱全!](https://zhuanlan.zhihu.com/p/55519131) - [two/one-stage,anchor-based/free目标检测发展及总结:一文了解目标检测](https://zhuanlan.zhihu.com/p/100823629) ### 2.3.2 论文 **【论文合集】** - 目标检测相关论文[deep_learning_object_detection](https://github.com/hoya012/deep_learning_object_detection) - [目标检测发展、论文综述](https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html) - [awesome-object-detection](https://github.com/amusi/awesome-object-detection) **【发展综述】** - [**Object Detection in 20 Years: A Survey**](https://arxiv.org/abs/1905.05055) - [**A Survey of Deep Learning-based Object Detection**](https://arxiv.org/abs/1907.09408) - **[Imbalance Problems in Object Detection: A Review](https://arxiv.org/abs/1909.00169)** - [**Recent Advances in Deep Learning for Object Detection**](https://arxiv.org/abs/1908.03673) - [**《Deep Learning for Generic Object Detection: A Survey》**](https://arxiv.org/abs/1809.02165) - [**《Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks》**](https://arxiv.org/abs/1809.03193) ### 2.3.3 代码实战 - 【github】[TensorFlow2.0-Examples](https://github.com/YunYang1994/TensorFlow2.0-Examples) - 【github】[awesome-object-detection](https://github.com/amusi/awesome-object-detection) - [【目标检测实战】Darknet—yolov3模型训练(VOC数据集)](https://zhuanlan.zhihu.com/p/92141879) - [【目标检测实战】Pytorch—SSD模型训练(VOC数据集)](https://zhuanlan.zhihu.com/p/92154612) --- # 3.学习资源 ## 3.1 机器学习 ### 3.1.1 入门概念 - [机器学习温和指南](http://link.zhihu.com/?target=https%3A//www.csdn.net/article/2015-09-08/2825647) - [有趣的机器学习:最简明入门指南](http://link.zhihu.com/?target=http%3A//blog.jobbole.com/67616/) - [一个故事说明什么是机器学习](http://link.zhihu.com/?target=https%3A//www.cnblogs.com/subconscious/p/4107357.html) - [cstghitpku:干货|机器学习超全综述!](https://zhuanlan.zhihu.com/p/46320419) - [机器学习该怎么入门?](https://www.zhihu.com/question/20691338) - [如何系统入门机器学习?](https://www.zhihu.com/question/266127835) - [机器学习该怎么入门?](https://www.zhihu.com/question/20691338) ### 3.1.2 公开课 - **加州理工学院**[**Learning from data(费曼奖得主Yaser Abu-Mostafa教授)**](http://work.caltech.edu/lectures.html) - **谷歌** [Google 制作的节奏紧凑、内容实用的机器学习简介课程](https://developers.google.com/machine-learning/crash-course/) - **林軒田**[[機器學習基石]Machine Learning Foundations——哔哩哔哩](https://www.bilibili.com/video/av1624332?p=2) **网易**
[![](https://camo.githubusercontent.com/eea35fe0589e9d1b64c41af9bf73be0dbf162201/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383431312d35386561636636342d646366352d343333322d393435622d6637393366343562346637302e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323530266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343530#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1004570029.htm)
[吴恩达机器学习](https://study.163.com/course/introduction/1004570029.htm)
网易杭州研究院
Google Brain 和百度大脑的发起人、Coursera 创始人吴恩达(Andrew Ng)亲授,在全球有百万选课量,主要讲述人工智能中基础的机...[查看详情](https://study.163.com/course/introduction/1004570029.htm)
中文教学的优质课程加上贴近生活的案例,你将在学习AI的道路上跑得更快!
[![](https://camo.githubusercontent.com/f09e216a5474a81adf2212e5a5e1900385fb0218/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383532352d30666138366238632d643039372d346335632d383835642d3634313630386232346562302e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323439266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343439#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1208946807.htm)
[李宏毅机器学习中文课程](https://study.163.com/course/introduction/1208946807.htm)
网易云课堂IT互联网
来自台湾大学李宏毅老师的课程,以精灵宝可梦作为课程案例,生动地为你讲解机器学习。同时,他还设计了六项作业和一项期末项目,...[查看详情](https://study.163.com/course/introduction/1208946807.htm)
[机器学习及其深层与结构化](https://study.163.com/course/introduction/1208991809.htm)
网易云课堂IT互联网
台湾大学李宏毅老师在《机器学习》基础上提供的《机器学习及其深度与结构化》课程,为你深入解析深度学习与结构学习。[查看详情](https://study.163.com/course/introduction/1208991809.htm)
[李宏毅线性代数中文课程](https://study.163.com/course/introduction/1208956807.htm)
网易云课堂IT互联网
来自台湾大学李宏毅老师的课程,专为对人工智能感兴趣,但是数学基础薄弱的同学设计,让你深刻理解数学概念,学会在人工智能应用...[查看详情](https://study.163.com/course/introduction/1208956807.htm)
[机器学习前沿技术](https://study.163.com/course/introduction/1209400866.htm)
网易云课堂IT互联网
机器学习的下一步是什么?机器能不能知道“我不知道”、“我为什么知道”,机器的错觉,终身学习
[查看详情](https://study.163.com/course/introduction/1209400866.htm) ### 3.1.3 学习资源 **书** - [周志华《机器学习》公式推导在线阅读](https://datawhalechina.github.io/pumpkin-book/#/) **知乎** - [机器学习科研的十年](https://zhuanlan.zhihu.com/p/74249758) - [机器学习最好的课程是什么?](https://www.zhihu.com/question/37031588/answer/723461499) - [**吴恩达机器学习笔记整理**](https://zhuanlan.zhihu.com/p/75173557) - **第一周**[单变量线性回归和损失函数、梯度下降的概念](https://zhuanlan.zhihu.com/p/73363177) - **第二周**[多变量线性回归和特征缩放、学习率](https://zhuanlan.zhihu.com/p/73403012) - **第三周**[分类问题逻辑回归和过拟合、正则化](https://zhuanlan.zhihu.com/p/73404297) - **第四周**[神经元、神经网络和前向传播算法](https://zhuanlan.zhihu.com/p/73665825) - **第五周**[神经网络、反向传播算法和随机初始化](https://zhuanlan.zhihu.com/p/74167352) - **第六周**[应用机器学习的建议和系统设计](https://zhuanlan.zhihu.com/p/75326539) - **第七周**[支持向量机SVM和核函数](https://zhuanlan.zhihu.com/p/74764135) - **第八周**[聚类K-Means算法、降维和主成分分析](https://zhuanlan.zhihu.com/p/74902766) - **第九周**[异常检测和高斯分布、推荐系统和协同过滤](https://zhuanlan.zhihu.com/p/75036754) - **第十周**[大规模机器学习和随机梯度下降算法](https://zhuanlan.zhihu.com/p/75171589) - [【机器学习理论】—mAP 查全率 查准率 IoU ROC PR曲线 F1值](https://zhuanlan.zhihu.com/p/92495276) - [SVM教程:支持向量机的直观理解](https://zhuanlan.zhihu.com/p/40857202) - [支持向量机(SVM)是什么意思?](https://www.zhihu.com/question/21094489/answer/86273196) **Github** - [Machine-Learning-Tutorials](https://github.com/ujjwalkarn/Machine-Learning-Tutorials) - [李航《统计学习方法》——代码实现](https://github.com/fengdu78/lihang-code) ### 3.1.4 竞赛平台 - [Kaggle](https://www.kaggle.com/competitions) - [阿里天池](https://tianchi.aliyun.com/home?spm=5176.12281949.0.0.493e2448ifo8Vz) - [Kesci 和鲸社区](https://www.kesci.com/) - [百度AI Studio](https://aistudio.baidu.com/aistudio/competition) ## 3.2 深度学习 ### 3.2.1 入门概念 - [深度学习如何入门?](https://www.zhihu.com/question/26006703/answer/129209540) - [有哪些优秀的深度学习入门书籍?需要先学习机器学习吗?](https://www.zhihu.com/question/36675272) - [CNN(卷积神经网络)是什么?有何入门简介或文章吗?](https://www.zhihu.com/question/52668301) - [从应用的角度来看,深度学习怎样快速入门?](https://www.zhihu.com/question/343407265/answer/830912894) - [普通程序员如何正确学习人工智能方向的知识?](https://www.zhihu.com/question/51039416) - [有哪些优秀的深度学习入门书籍?需要先学习机器学习吗?](https://www.zhihu.com/question/36675272/answer/603847513) - [给妹纸的深度学习教学(0)——从这里出发](https://zhuanlan.zhihu.com/p/28462089) ### 3.2.2 视频公开课 **3Blue1Brown** - [【S301】But what is a Neural Network 什么是神经网络?](https://zhuanlan.zhihu.com/p/104263315) - [【S302】Gradient descent, how neural networks learn 梯度下降,神经网络如何学习](https://zhuanlan.zhihu.com/p/104263315) - [【S303】What is backpropagation really doing 反向传播是如何起作用的](https://zhuanlan.zhihu.com/p/104263315) - [【S304】Backpropagation calculus 反向传播公式推导](https://zhuanlan.zhihu.com/p/104263315)[
](https://zhuanlan.zhihu.com/p/104263315) **斯坦福** - [斯坦福2017季CS224n深度学习自然语言处理课程](https://www.bilibili.com/video/av13383754/?from=search&seid=13189649321373413789) - [斯坦福大学公开课 :机器学习课程-吴恩达](http://open.163.com/special/opencourse/machinelearning.html) **Coursera** - [Machine Learning | Coursera](https://www.coursera.org/learn/machine-learning) **李宏毅**
官方主页:[Hung-yi Lee](http://speech.ee.ntu.edu.tw/~tlkagk/talk.html) - **YouTube Channel teaching Deep Learning and Machine Learning** ([link](https://www.youtube.com/channel/UC2ggjtuuWvxrHHHiaDH1dlQ/playlists)) - [李宏毅深度学习(2016)—哔哩哔哩](https://www.bilibili.com/video/av9770190/?from=search&seid=17240241049019116161) - [李宏毅深度学习(2017)—哔哩哔哩](https://www.bilibili.com/video/av9770302/?from=search&seid=9981051227372686627) - **Tutorial for Generative Adversarial Network (GAN)**([slideshare](https://www.slideshare.net/tw_dsconf/ss-78795326),[pdf](http://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_GAN.pdf),[ppt](http://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_GAN.pptx)) - **Tutorial for General Deep Learning Technology**([slideshare](http://www.slideshare.net/tw_dsconf/ss-62245351),[pdf](http://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_Deep.pdf),[ppt](http://speech.ee.ntu.edu.tw/~tlkagk/slide/Tutorial_HYLee_Deep.pptx)) **网易**
[![](https://camo.githubusercontent.com/f44b5ac541b5f36064d483e5d97bf7a8f9070ecb/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383437302d34653536643638642d393964632d343136312d383437662d3666353931303237363636302e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323439266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343439#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1003842018.htm)
[Hinton机器学习与神经网络中文课](https://study.163.com/course/introduction/1003842018.htm)
AI研习社
多伦多大学教授 Geoffrey Hinton,众所周知的神经网络发明者,亲自为你讲解机器学习与神经网络相关课程。[查看详情](https://study.163.com/course/introduction/1003842018.htm) [![](https://camo.githubusercontent.com/24037d321427d11dff63e86942e438f08621e000/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383535362d38303335633839302d393131352d346165372d383631342d3134643061303838343030362e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323439266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343439#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1004336028.htm)
[牛津大学xDeepMind 自然语言处理](https://study.163.com/course/introduction/1004336028.htm)
大数据文摘
由牛津大学人工智能实验室,与创造了 AlphaGo 传奇的谷歌 DeepMind 部门合作的课程,主要讲述利用深度学习实现自然语言处理(NLP...[查看详情](https://study.163.com/course/introduction/1004336028.htm)
[![](https://camo.githubusercontent.com/705d2c9b7ded47c9a48c498f7cc058854f106e18/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383439312d36303131613762352d373565632d346338622d626534362d6433383138663762393463652e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323439266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343439#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1004938039.htm)
[MIT6.S094深度学习与自动驾驶](https://study.163.com/course/introduction/1004938039.htm)
大数据文摘
由麻省理工大学(MIT)推出的自动驾驶课程 6.S094 ,主要讲述自动驾驶技术,提供在线项目的实践环境,可直接修改官方网站代码,...[查看详情](https://study.163.com/course/introduction/1004938039.htm) ### 3.2.3 学习资源 #### 书PDF [《Dive Into DeepLearning》动手学深度学习](http://zh.d2l.ai/)    [**Pytorch版**](http://tangshusen.me/Dive-into-DL-PyTorch/#/)      [**Tensorflow2.0版**](https://trickygo.github.io/Dive-into-DL-TensorFlow2.0/#/)
麻省理工学院出版社《[Deep Learning](http://www.deeplearningbook.org/)》 > 中文版:[exacity/deeplearningbook-chinese](https://github.com/exacity/deeplearningbook-chinese) 《[Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/index.html)》 > 中文版:[https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/](https://tigerneil.gitbooks.io/neural-networks-and-deep-learning-zh/content/) #### 卷积神经网络 - [能否对卷积神经网络工作原理做一个直观的解释?](https://www.zhihu.com/question/39022858) - [CNN 入门讲解专栏阅读顺序以及论文研读视频集合](https://zhuanlan.zhihu.com/p/33855959) - [CNN系列模型发展简述(附github代码——已全部跑通)](https://zhuanlan.zhihu.com/p/66215918) - [干货 | 目标检测入门,看这篇就够了(已更完)](https://zhuanlan.zhihu.com/p/34142321) - [详解反向传播算法(上)](https://zhuanlan.zhihu.com/p/25081671) - [【论文解读】CNN深度卷积神经网络-AlexNet](https://zhuanlan.zhihu.com/p/107660669) - [【论文解读】CNN深度卷积神经网络-VGG](https://zhuanlan.zhihu.com/p/107884876) - [【论文解读】CNN深度卷积神经网络-Network in Network](https://zhuanlan.zhihu.com/p/108235295) - [【论文解读】CNN深度卷积神经网络-GoogLeNet](https://zhuanlan.zhihu.com/p/108414921) - [【论文解读】CNN深度卷积神经网络-ResNet](https://zhuanlan.zhihu.com/p/108708768) - [【论文解读】CNN深度卷积神经网络-DenseNet](https://zhuanlan.zhihu.com/p/109269085) ### 3.2.4  开源工具 #### 深度学习框架 - [**Tensorflow**](https://tensorflow.google.cn/) - [**Pytorch**](https://tensorflow.google.cn/) - [**PaddlePaddle**](https://www.paddlepaddle.org.cn/) - [**Keras**](https://keras.io/) - [**Mxnet**](http://mxnet.incubator.apache.org/) - [**Caffe**](http://caffe.berkeleyvision.org/) - [**Darknet**](https://pjreddie.com/darknet/) **Tensorflow入门** - [Tensorflow官方Tutorials](https://tensorflow.google.cn/tutorials) - [在线pdf:《简单粗暴 TensorFlow 2》](https://tf.wiki/) - 【github】[TensorFlow-Course](https://github.com/machinelearningmindset/TensorFlow-Course) - 【github】[TensorFlow2.0-Examples](https://github.com/YunYang1994/TensorFlow2.0-Examples) #### 支撑工具 - [Cuda下载——GPU通用计算框架](https://developer.nvidia.com/cuda-toolkit-archive) - [Cudnn下载——GPU加速库](https://developer.nvidia.com/rdp/cudnn-download) - [Nvidia Driver下载——Nvidia显卡驱动](https://www.nvidia.cn/Download/index.aspx?lang=cn#) - [Nvidia TensorRT下载——Nvidia高性能深度学习推理加深SDK](https://developer.nvidia.com/tensorrt) - [Anaconda——虚拟编程环境管理](https://www.anaconda.com/) - [NN-SVG——在线神经网络模型画图工具](http://alexlenail.me/NN-SVG/index.html) - [Netron——开源神经网络模型画图工具](https://github.com/lutzroeder/netron) - [PlotNeuralNet——开源神经网络绘图工具](https://github.com/HarisIqbal88/PlotNeuralNet) #### 其他资源 - [FFmpeg——有关视频、图片处理的一切](http://ffmpeg.org/) - [Spleeter——用深度学习分离音乐中的各个音轨,伴奏提取](https://github.com/deezer/spleeter) - [GAN人脸生成——用StyleGAN换脸](https://github.com/a312863063/generators-with-stylegan2) - [faceswap——GAN视频换脸](https://github.com/deepfakes/faceswap) - [DeepFaceLab——基于faceswap的换脸软件](https://github.com/iperov/DeepFaceLab) --- ## 3.3 计算机视觉 ### 3.3.1 入门概念 ### 3.3.2 公开课 **网易**
[![](https://camo.githubusercontent.com/7194aa9572bff7302a413e967ddf54c0c6c6dcdd/68747470733a2f2f63646e2e6e6c61726b2e636f6d2f79757175652f302f323032302f706e672f3231363931342f313538343432353633383432302d62393930366337612d306461322d346332662d616263322d3762323537343930393033332e706e6723616c69676e3d6c65667426646973706c61793d696e6c696e65266865696768743d323439266f726967696e4865696768743d323530266f726967696e57696474683d3435302673697a653d30267374617475733d646f6e65267374796c653d6e6f6e652677696474683d343439#align=left&display=inline&height=250&originHeight=250&originWidth=450&status=done&style=none&width=450)](https://study.163.com/course/introduction/1003223001.htm)
[CS231n计算机视觉课程](https://study.163.com/course/introduction/1003223001.htm)
大数据文摘
谷歌 AI 中国的负责人、斯坦福大学副教授李飞飞(Fei-Fei L)亲授的 CS231n 课程,每年选课量都爆满的斯坦福王牌课程,主要讲述...[查看详情](https://study.163.com/course/introduction/1003223001.htm) ### 3.3.3 学习资源 **理论** - OpenCV官网 [https://opencv.org/](https://opencv.org/) - 学习网站 [https://www.learnopencv.com/](https://www.learnopencv.com/) **代码实战** - 【github】[OpenCV官方Demo](https://github.com/opencv/opencv/tree/master/samples/cpp) - [【CV实战】OpenCV—Hello world代码示例](https://zhuanlan.zhihu.com/p/58028543) - [【CV实战】Ubuntu18.04源码编译安装opencv-3.4.X+测试demo](https://zhuanlan.zhihu.com/p/93356275) --- # 4.公开数据集 ## 4.1 Pytorch提供 [**torchvision.datasets**](https://pytorch.org/docs/master/torchvision/datasets.html#) - [MNIST](https://pytorch.org/docs/master/torchvision/datasets.html#mnist) - [Fashion-MNIST](https://pytorch.org/docs/master/torchvision/datasets.html#fashion-mnist) - [KMNIST](https://pytorch.org/docs/master/torchvision/datasets.html#kmnist) - [EMNIST](https://pytorch.org/docs/master/torchvision/datasets.html#emnist) - [QMNIST](https://pytorch.org/docs/master/torchvision/datasets.html#qmnist) - [FakeData](https://pytorch.org/docs/master/torchvision/datasets.html#fakedata) - [COCO](https://pytorch.org/docs/master/torchvision/datasets.html#coco) - [LSUN](https://pytorch.org/docs/master/torchvision/datasets.html#lsun) - [ImageFolder](https://pytorch.org/docs/master/torchvision/datasets.html#imagefolder) - [DatasetFolder](https://pytorch.org/docs/master/torchvision/datasets.html#datasetfolder) - [ImageNet](https://pytorch.org/docs/master/torchvision/datasets.html#imagenet) - [CIFAR](https://pytorch.org/docs/master/torchvision/datasets.html#cifar) - [STL10](https://pytorch.org/docs/master/torchvision/datasets.html#stl10) - [SVHN](https://pytorch.org/docs/master/torchvision/datasets.html#svhn) - [PhotoTour](https://pytorch.org/docs/master/torchvision/datasets.html#phototour) - [SBU](https://pytorch.org/docs/master/torchvision/datasets.html#sbu) - [Flickr](https://pytorch.org/docs/master/torchvision/datasets.html#flickr) - [VOC](https://pytorch.org/docs/master/torchvision/datasets.html#voc) - [Cityscapes](https://pytorch.org/docs/master/torchvision/datasets.html#cityscapes) - [SBD](https://pytorch.org/docs/master/torchvision/datasets.html#sbd) - [USPS](https://pytorch.org/docs/master/torchvision/datasets.html#usps) - [Kinetics-400](https://pytorch.org/docs/master/torchvision/datasets.html#kinetics-400) - [HMDB51](https://pytorch.org/docs/master/torchvision/datasets.html#hmdb51) - [UCF101](https://pytorch.org/docs/master/torchvision/datasets.html#ucf101) -
[**torchaudio.datasets**](https://pytorch.org/audio/datasets.html#) - [COMMONVOICE](https://pytorch.org/audio/datasets.html#commonvoice) - [LIBRISPEECH](https://pytorch.org/audio/datasets.html#librispeech) - [VCTK](https://pytorch.org/audio/datasets.html#vctk) - [YESNO](https://pytorch.org/audio/datasets.html#yesno) [**torchtext.datasets**](https://pytorch.org/text/datasets.html#) - [Language Modeling](https://pytorch.org/text/datasets.html#language-modeling) - [Sentiment Analysis](https://pytorch.org/text/datasets.html#sentiment-analysis) - [Text Classification](https://pytorch.org/text/datasets.html#text-classification) - [Question Classification](https://pytorch.org/text/datasets.html#question-classification) - [Entailment](https://pytorch.org/text/datasets.html#entailment) - [Language Modeling](https://pytorch.org/text/datasets.html#id1) - [Machine Translation](https://pytorch.org/text/datasets.html#machine-translation) - [Sequence Tagging](https://pytorch.org/text/datasets.html#sequence-tagging) - [Question Answering](https://pytorch.org/text/datasets.html#question-answering) - [Unsupervised Learning](https://pytorch.org/text/datasets.html#unsupervised-learning) ## 4.2 Tensorflow提供 - **Audio** - [groove](https://tensorflow.google.cn/datasets/catalog/groove) - [librispeech](https://tensorflow.google.cn/datasets/catalog/librispeech) - [libritts](https://tensorflow.google.cn/datasets/catalog/libritts) - [ljspeech](https://tensorflow.google.cn/datasets/catalog/ljspeech) - [nsynth](https://tensorflow.google.cn/datasets/catalog/nsynth) - [savee](https://tensorflow.google.cn/datasets/catalog/savee) - [speech_commands](https://tensorflow.google.cn/datasets/catalog/speech_commands) - **Image** - [abstract_reasoning](https://tensorflow.google.cn/datasets/catalog/abstract_reasoning) - [aflw2k3d](https://tensorflow.google.cn/datasets/catalog/aflw2k3d) - [arc](https://tensorflow.google.cn/datasets/catalog/arc) - [beans](https://tensorflow.google.cn/datasets/catalog/beans) - [bigearthnet](https://tensorflow.google.cn/datasets/catalog/bigearthnet) - [binarized_mnist](https://tensorflow.google.cn/datasets/catalog/binarized_mnist) - [binary_alpha_digits](https://tensorflow.google.cn/datasets/catalog/binary_alpha_digits) - [caltech101](https://tensorflow.google.cn/datasets/catalog/caltech101) - [caltech_birds2010](https://tensorflow.google.cn/datasets/catalog/caltech_birds2010) - [caltech_birds2011](https://tensorflow.google.cn/datasets/catalog/caltech_birds2011) - [cars196](https://tensorflow.google.cn/datasets/catalog/cars196) - [cassava](https://tensorflow.google.cn/datasets/catalog/cassava) - [cats_vs_dogs](https://tensorflow.google.cn/datasets/catalog/cats_vs_dogs) - [celeb_a](https://tensorflow.google.cn/datasets/catalog/celeb_a) - [celeb_a_hq](https://tensorflow.google.cn/datasets/catalog/celeb_a_hq) - [cifar10](https://tensorflow.google.cn/datasets/catalog/cifar10) - [cifar100](https://tensorflow.google.cn/datasets/catalog/cifar100) - [cifar10_1](https://tensorflow.google.cn/datasets/catalog/cifar10_1) - [cifar10_corrupted](https://tensorflow.google.cn/datasets/catalog/cifar10_corrupted) - [citrus_leaves](https://tensorflow.google.cn/datasets/catalog/citrus_leaves) - [cityscapes](https://tensorflow.google.cn/datasets/catalog/cityscapes) - [clevr](https://tensorflow.google.cn/datasets/catalog/clevr) - [cmaterdb](https://tensorflow.google.cn/datasets/catalog/cmaterdb) - [coil100](https://tensorflow.google.cn/datasets/catalog/coil100) - [colorectal_histology](https://tensorflow.google.cn/datasets/catalog/colorectal_histology) - [colorectal_histology_large](https://tensorflow.google.cn/datasets/catalog/colorectal_histology_large) - [curated_breast_imaging_ddsm](https://tensorflow.google.cn/datasets/catalog/curated_breast_imaging_ddsm) - [cycle_gan](https://tensorflow.google.cn/datasets/catalog/cycle_gan) - [deep_weeds](https://tensorflow.google.cn/datasets/catalog/deep_weeds) - [diabetic_retinopathy_detection](https://tensorflow.google.cn/datasets/catalog/diabetic_retinopathy_detection) - [div2k](https://tensorflow.google.cn/datasets/catalog/div2k) - [dmlab](https://tensorflow.google.cn/datasets/catalog/dmlab) - [downsampled_imagenet](https://tensorflow.google.cn/datasets/catalog/downsampled_imagenet) - [dsprites](https://tensorflow.google.cn/datasets/catalog/dsprites) - [dtd](https://tensorflow.google.cn/datasets/catalog/dtd) - [duke_ultrasound](https://tensorflow.google.cn/datasets/catalog/duke_ultrasound) - [emnist](https://tensorflow.google.cn/datasets/catalog/emnist) - [eurosat](https://tensorflow.google.cn/datasets/catalog/eurosat) - [fashion_mnist](https://tensorflow.google.cn/datasets/catalog/fashion_mnist) - [flic](https://tensorflow.google.cn/datasets/catalog/flic) - [food101](https://tensorflow.google.cn/datasets/catalog/food101) - [geirhos_conflict_stimuli](https://tensorflow.google.cn/datasets/catalog/geirhos_conflict_stimuli) - [horses_or_humans](https://tensorflow.google.cn/datasets/catalog/horses_or_humans) - [i_naturalist2017](https://tensorflow.google.cn/datasets/catalog/i_naturalist2017) - [image_label_folder](https://tensorflow.google.cn/datasets/catalog/image_label_folder) - [imagenet2012](https://tensorflow.google.cn/datasets/catalog/imagenet2012) - [imagenet2012_corrupted](https://tensorflow.google.cn/datasets/catalog/imagenet2012_corrupted) - [imagenet_resized](https://tensorflow.google.cn/datasets/catalog/imagenet_resized) - [imagenette](https://tensorflow.google.cn/datasets/catalog/imagenette) - [imagewang](https://tensorflow.google.cn/datasets/catalog/imagewang) - [kmnist](https://tensorflow.google.cn/datasets/catalog/kmnist) - [lfw](https://tensorflow.google.cn/datasets/catalog/lfw) - [lost_and_found](https://tensorflow.google.cn/datasets/catalog/lost_and_found) - [lsun](https://tensorflow.google.cn/datasets/catalog/lsun) - [malaria](https://tensorflow.google.cn/datasets/catalog/malaria) - [mnist](https://tensorflow.google.cn/datasets/catalog/mnist) - [mnist_corrupted](https://tensorflow.google.cn/datasets/catalog/mnist_corrupted) - [omniglot](https://tensorflow.google.cn/datasets/catalog/omniglot) - [oxford_flowers102](https://tensorflow.google.cn/datasets/catalog/oxford_flowers102) - [oxford_iiit_pet](https://tensorflow.google.cn/datasets/catalog/oxford_iiit_pet) - [patch_camelyon](https://tensorflow.google.cn/datasets/catalog/patch_camelyon) - [pet_finder](https://tensorflow.google.cn/datasets/catalog/pet_finder) - [places365_small](https://tensorflow.google.cn/datasets/catalog/places365_small) - [plant_leaves](https://tensorflow.google.cn/datasets/catalog/plant_leaves) - [plant_village](https://tensorflow.google.cn/datasets/catalog/plant_village) - [plantae_k](https://tensorflow.google.cn/datasets/catalog/plantae_k) - [quickdraw_bitmap](https://tensorflow.google.cn/datasets/catalog/quickdraw_bitmap) - [resisc45](https://tensorflow.google.cn/datasets/catalog/resisc45) - [rock_paper_scissors](https://tensorflow.google.cn/datasets/catalog/rock_paper_scissors) - [scene_parse150](https://tensorflow.google.cn/datasets/catalog/scene_parse150) - [shapes3d](https://tensorflow.google.cn/datasets/catalog/shapes3d) - [smallnorb](https://tensorflow.google.cn/datasets/catalog/smallnorb) - [so2sat](https://tensorflow.google.cn/datasets/catalog/so2sat) - [stanford_dogs](https://tensorflow.google.cn/datasets/catalog/stanford_dogs) - [stanford_online_products](https://tensorflow.google.cn/datasets/catalog/stanford_online_products) - [sun397](https://tensorflow.google.cn/datasets/catalog/sun397) - [svhn_cropped](https://tensorflow.google.cn/datasets/catalog/svhn_cropped) - [tf_flowers](https://tensorflow.google.cn/datasets/catalog/tf_flowers) - [the300w_lp](https://tensorflow.google.cn/datasets/catalog/the300w_lp) - [uc_merced](https://tensorflow.google.cn/datasets/catalog/uc_merced) - [vgg_face2](https://tensorflow.google.cn/datasets/catalog/vgg_face2) - [visual_domain_decathlon](https://tensorflow.google.cn/datasets/catalog/visual_domain_decathlon) - **Object_detection** - [coco](https://tensorflow.google.cn/datasets/catalog/coco) - [kitti](https://tensorflow.google.cn/datasets/catalog/kitti) - [open_images_v4](https://tensorflow.google.cn/datasets/catalog/open_images_v4) - [voc](https://tensorflow.google.cn/datasets/catalog/voc) - [wider_face](https://tensorflow.google.cn/datasets/catalog/wider_face) - **Structured** - [amazon_us_reviews](https://tensorflow.google.cn/datasets/catalog/amazon_us_reviews) - [forest_fires](https://tensorflow.google.cn/datasets/catalog/forest_fires) - [german_credit_numeric](https://tensorflow.google.cn/datasets/catalog/german_credit_numeric) - [higgs](https://tensorflow.google.cn/datasets/catalog/higgs) - [iris](https://tensorflow.google.cn/datasets/catalog/iris) - [rock_you](https://tensorflow.google.cn/datasets/catalog/rock_you) - [titanic](https://tensorflow.google.cn/datasets/catalog/titanic) - **Summarization** - [aeslc](https://tensorflow.google.cn/datasets/catalog/aeslc) - [big_patent](https://tensorflow.google.cn/datasets/catalog/big_patent) - [billsum](https://tensorflow.google.cn/datasets/catalog/billsum) - [cnn_dailymail](https://tensorflow.google.cn/datasets/catalog/cnn_dailymail) - [gigaword](https://tensorflow.google.cn/datasets/catalog/gigaword) - [multi_news](https://tensorflow.google.cn/datasets/catalog/multi_news) - [newsroom](https://tensorflow.google.cn/datasets/catalog/newsroom) - [opinosis](https://tensorflow.google.cn/datasets/catalog/opinosis) - [reddit_tifu](https://tensorflow.google.cn/datasets/catalog/reddit_tifu) - [scientific_papers](https://tensorflow.google.cn/datasets/catalog/scientific_papers) - [wikihow](https://tensorflow.google.cn/datasets/catalog/wikihow) - [xsum](https://tensorflow.google.cn/datasets/catalog/xsum) - **Text** - [c4](https://tensorflow.google.cn/datasets/catalog/c4) - [cfq](https://tensorflow.google.cn/datasets/catalog/cfq) - [civil_comments](https://tensorflow.google.cn/datasets/catalog/civil_comments) - [cos_e](https://tensorflow.google.cn/datasets/catalog/cos_e) - [definite_pronoun_resolution](https://tensorflow.google.cn/datasets/catalog/definite_pronoun_resolution) - [eraser_multi_rc](https://tensorflow.google.cn/datasets/catalog/eraser_multi_rc) - [esnli](https://tensorflow.google.cn/datasets/catalog/esnli) - [gap](https://tensorflow.google.cn/datasets/catalog/gap) - [glue](https://tensorflow.google.cn/datasets/catalog/glue) - [imdb_reviews](https://tensorflow.google.cn/datasets/catalog/imdb_reviews) - [librispeech_lm](https://tensorflow.google.cn/datasets/catalog/librispeech_lm) - [lm1b](https://tensorflow.google.cn/datasets/catalog/lm1b) - [math_dataset](https://tensorflow.google.cn/datasets/catalog/math_dataset) - [movie_rationales](https://tensorflow.google.cn/datasets/catalog/movie_rationales) - [multi_nli](https://tensorflow.google.cn/datasets/catalog/multi_nli) - [multi_nli_mismatch](https://tensorflow.google.cn/datasets/catalog/multi_nli_mismatch) - [natural_questions](https://tensorflow.google.cn/datasets/catalog/natural_questions) - [qa4mre](https://tensorflow.google.cn/datasets/catalog/qa4mre) - [scan](https://tensorflow.google.cn/datasets/catalog/scan) - [scicite](https://tensorflow.google.cn/datasets/catalog/scicite) - [snli](https://tensorflow.google.cn/datasets/catalog/snli) - [squad](https://tensorflow.google.cn/datasets/catalog/squad) - [super_glue](https://tensorflow.google.cn/datasets/catalog/super_glue) - [tiny_shakespeare](https://tensorflow.google.cn/datasets/catalog/tiny_shakespeare) - [trivia_qa](https://tensorflow.google.cn/datasets/catalog/trivia_qa) - [wikipedia](https://tensorflow.google.cn/datasets/catalog/wikipedia) - [xnli](https://tensorflow.google.cn/datasets/catalog/xnli) - [yelp_polarity_reviews](https://tensorflow.google.cn/datasets/catalog/yelp_polarity_reviews) - **Translate** - [flores](https://tensorflow.google.cn/datasets/catalog/flores) - [para_crawl](https://tensorflow.google.cn/datasets/catalog/para_crawl) - [ted_hrlr_translate](https://tensorflow.google.cn/datasets/catalog/ted_hrlr_translate) - [ted_multi_translate](https://tensorflow.google.cn/datasets/catalog/ted_multi_translate) - [wmt14_translate](https://tensorflow.google.cn/datasets/catalog/wmt14_translate) - [wmt15_translate](https://tensorflow.google.cn/datasets/catalog/wmt15_translate) - [wmt16_translate](https://tensorflow.google.cn/datasets/catalog/wmt16_translate) - [wmt17_translate](https://tensorflow.google.cn/datasets/catalog/wmt17_translate) - [wmt18_translate](https://tensorflow.google.cn/datasets/catalog/wmt18_translate) - [wmt19_translate](https://tensorflow.google.cn/datasets/catalog/wmt19_translate) - [wmt_t2t_translate](https://tensorflow.google.cn/datasets/catalog/wmt_t2t_translate) - **Video** - [bair_robot_pushing_small](https://tensorflow.google.cn/datasets/catalog/bair_robot_pushing_small) - [moving_mnist](https://tensorflow.google.cn/datasets/catalog/moving_mnist) - [robonet](https://tensorflow.google.cn/datasets/catalog/robonet) - [starcraft_video](https://tensorflow.google.cn/datasets/catalog/starcraft_video) - [ucf101](https://tensorflow.google.cn/datasets/catalog/ucf101)