# MERIT **Repository Path**: lesie/MERIT ## Basic Information - **Project Name**: MERIT - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-06 - **Last Updated**: 2024-01-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MERIT

A PyTorch implementation of our IJCAI-21 paper [Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning](https://arxiv.org/abs/2105.05682). ## Dependencies + Python (>=3.6) + PyTorch (>=1.7.1) + NumPy (>=1.19.2) + Scikit-Learn (>=0.24.1) + Scipy (>=1.6.1) + Networkx (>=2.5) To install all dependencies: ``` pip install -r requirements.txt ``` ## Usage Here we provide the implementation of MERIT along with Cora and Citeseer dataset. + To train and evaluate on Cora: ``` python run_cora.py ``` + To train and evaluate on Citeseer: ``` python run_citeseer.py ``` ## Citation If you use our code in your research, please cite the following article: ``` @inproceedings{Jin2021MultiScaleCS, title={Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning}, author={Ming Jin and Yizhen Zheng and Yuan-Fang Li and Chen Gong and Chuan Zhou and Shirui Pan}, booktitle={The 30th International Joint Conference on Artificial Intelligence (IJCAI)}, year={2021} } ```