# MERIT
**Repository Path**: lesie/MERIT
## Basic Information
- **Project Name**: MERIT
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-01-06
- **Last Updated**: 2024-01-06
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# MERIT
A PyTorch implementation of our IJCAI-21 paper [Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning](https://arxiv.org/abs/2105.05682).
## Dependencies
+ Python (>=3.6)
+ PyTorch (>=1.7.1)
+ NumPy (>=1.19.2)
+ Scikit-Learn (>=0.24.1)
+ Scipy (>=1.6.1)
+ Networkx (>=2.5)
To install all dependencies:
```
pip install -r requirements.txt
```
## Usage
Here we provide the implementation of MERIT along with Cora and Citeseer dataset.
+ To train and evaluate on Cora:
```
python run_cora.py
```
+ To train and evaluate on Citeseer:
```
python run_citeseer.py
```
## Citation
If you use our code in your research, please cite the following article:
```
@inproceedings{Jin2021MultiScaleCS,
title={Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning},
author={Ming Jin and Yizhen Zheng and Yuan-Fang Li and Chen Gong and Chuan Zhou and Shirui Pan},
booktitle={The 30th International Joint Conference on Artificial Intelligence (IJCAI)},
year={2021}
}
```