# TE-GCN **Repository Path**: jdlc105/TE-GCN ## Basic Information - **Project Name**: TE-GCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-29 - **Last Updated**: 2024-10-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TE-GCN Code for the paper ["Temporal-Enhanced Graph Convolution Network for Skeleton-based Action Recognition"](https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.12086) Please cite the following paper if you use this repository in your reseach. ``` @article{xie_tegcn_2022, author = {Xie, Yulai and Zhang, Yang and Ren, Fang}, doi = {https://doi.org/10.1049/cvi2.12086}, journal = {IET Comput.Vis.}, title = {{Temporal-enhanced graph convolution network for skeleton-based action recognition}}, year = {2022} } ``` Note that: - This code is based on [2s-AGCN](https://github.com/lshiwjx/2s-AGCN) ## Data preparation Prepare the data according to [UAVHuman-Pose processing](https://github.com/xieyulai/UAVHuman_For_TE-GCN) Your `data/` should be like this: ``` uav ___ xsub1 ___ test_data.npy ___ test_label.pkl ___ train_data.npy ___ train_label.pkl ___ xsub2 ___ test_data.npy ___ test_label.pkl ___ train_data.npy ___ train_label.pkl ``` ## TRAIN You can train the your model using the scripts: ``` sh scripts/TRAIN_V1.sh sh scripts/TRAIN_V2.sh ``` ## TEST You can test the your model using the scripts: ``` sh scripts/EVAL_V1.sh sh scripts/EVAL_V2.sh ``` ## WEIGHTS We have released two trained weights in [baidupan](https://pan.baidu.com/s/1kourPFzEChrjc8kPO0y6rw),passwd is `nwhu` Your should put them into `runs/`. - V1:TOP1-42.37% - V2:TOP1-68.11%