# cvpr2016 **Repository Path**: idoltgy/cvpr2016 ## Basic Information - **Project Name**: cvpr2016 - **Description**: Learning Deep Representations of Fine-grained Visual Descriptions - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-26 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ###Learning Deep Representations of Fine-grained Visual Descriptions Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele #####How to train a char-CNN-RNN model: 1. Download the [birds](https://drive.google.com/open?id=0B0ywwgffWnLLZW9uVHNjb2JmNlE) and [flowers](https://drive.google.com/open?id=0B0ywwgffWnLLcms2WWJQRFNSWXM) data. 2. Modify the training script (e.g. `train_cub_hybrid.sh` for birds) to point to your data directory. 3. Run the training script: `./train_cub_hybrid.sh` #####How to evaluate: 1. Train a model (see above). 2. Modify the eval bash script (e.g. `eval_cub_cls.sh` for birds) to point to your saved checkpoint. 3. Run the eval script: `./eval_cub_cls.sh` #####Pretrained models: * [Char-CNN-RNN for birds](https://drive.google.com/open?id=0B0ywwgffWnLLYUNVWVV5Sm1xcWc) * [Char-CNN-RNN for flowers](https://drive.google.com/open?id=0B0ywwgffWnLLV205RXF4Y2hFY1E) #####Citation If you find this work useful, please cite as follows: ``` @inproceedings{reed2016learning, title = {Learning Deep Representations of Fine-Grained Visual Descriptions, booktitle = {IEEE Computer Vision and Pattern Recognition}, year = {2016}, author = {Scott Reed and Zeynep Akata and Bernt Schiele and Honglak Lee}, } ```