# cvpr2016
**Repository Path**: idoltgy/cvpr2016
## Basic Information
- **Project Name**: cvpr2016
- **Description**: Learning Deep Representations of Fine-grained Visual Descriptions
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-08-26
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
###Learning Deep Representations of Fine-grained Visual Descriptions
Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele
#####How to train a char-CNN-RNN model:
1. Download the [birds](https://drive.google.com/open?id=0B0ywwgffWnLLZW9uVHNjb2JmNlE)
and [flowers](https://drive.google.com/open?id=0B0ywwgffWnLLcms2WWJQRFNSWXM) data.
2. Modify the training script (e.g. `train_cub_hybrid.sh` for birds) to point to your data directory.
3. Run the training script: `./train_cub_hybrid.sh`
#####How to evaluate:
1. Train a model (see above).
2. Modify the eval bash script (e.g. `eval_cub_cls.sh` for birds) to point to your saved checkpoint.
3. Run the eval script: `./eval_cub_cls.sh`
#####Pretrained models:
* [Char-CNN-RNN for birds](https://drive.google.com/open?id=0B0ywwgffWnLLYUNVWVV5Sm1xcWc)
* [Char-CNN-RNN for flowers](https://drive.google.com/open?id=0B0ywwgffWnLLV205RXF4Y2hFY1E)
#####Citation
If you find this work useful, please cite as follows:
```
@inproceedings{reed2016learning,
title = {Learning Deep Representations of Fine-Grained Visual Descriptions,
booktitle = {IEEE Computer Vision and Pattern Recognition},
year = {2016},
author = {Scott Reed and Zeynep Akata and Bernt Schiele and Honglak Lee},
}
```