# AdversarialTexture **Repository Path**: huimam/AdversarialTexture ## Basic Information - **Project Name**: AdversarialTexture - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-20 - **Last Updated**: 2022-12-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). ![AdversarialTexture Teaser](https://github.com/hjwdzh/AdversarialTexture/raw/master/res/teaser.png) ### Scanning Data Download Please refer to [**data**](https://github.com/hjwdzh/AdversarialTexture/raw/master/data/) directory for details. Before run following scripts, please modify the data_path in src/config.py as the absolute path of the data folder (e.g. Adversarial/data) where you download all data. ### Prepare for Training (Optimization) Please refer to [**src/preprocessing**](https://github.com/hjwdzh/AdversarialTexture/raw/master/src/preprocessing) directory for details. ### Run Training (Optimization) Consider execute run_all.sh in parallel. ``` cd src/textureoptim python gen_script.py sh run_all.sh ``` ### Result Visualization The result will be stored in data/result/chairID/chairID.png. You can use them to replace the corresponding default texture in data/shape, and use meshlab to open obj files to see the results. Alternatively, we provide a simple script to render results. You will be able to see the rendering comparison in data/visual. ``` cd src python visualize.py ``` ## Authors - [Jingwei Huang](mailto:jingweih@stanford.edu) © Jingwei Huang, Stanford University **IMPORTANT**: If you use this code please cite the following in any resulting publication: ``` @inproceedings{huang2020adversarial, title={Adversarial Texture Optimization from RGB-D Scans}, author={Huang, Jingwei and Thies, Justus and Dai, Angela and Kundu, Abhijit and Jiang, Chiyu and Guibas, Leonidas J and Niessner, Matthias and Funkhouser, Thomas}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={1559--1568}, year={2020} } ``` The rendering process is a modification of [**pyRender**](https://github.com/hjwdzh/pyRender). ---- ### Address 此仓库Fork于[Github](https://github.com/hjwdzh/AdversarialTexture)