# Gen3R **Repository Path**: falin1/Gen3R ## Basic Information - **Project Name**: Gen3R - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-20 - **Last Updated**: 2026-01-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Gen3R: 3D Scene Generation Meets Feed-Forward Reconstruction

[Jiaxin Huang](https://jaceyhuang.github.io/), [Yuanbo Yang](https://github.com/freemty), [Bangbang Yang](https://ybbbbt.com/), [Lin Ma](https://scholar.google.com/citations?user=S4HGIIUAAAAJ&hl=en), [Yuewen Ma](https://scholar.google.com/citations?user=VG_cdLAAAAAJ), [Yiyi Liao](https://yiyiliao.github.io/) Project Page arXiv

Logo

TL;DR: Gen3R creates multi-quantity geometry with RGB from images via a unified latent space that aligns geometry and appearance.

## 🛠️ Setup We train and test our model under the following environment: - Debian GNU/Linux 12 (bookworm) - NVIDIA H20 (96G) - CUDA 12.4 - Python 3.11 - Pytorch 2.5.1+cu124 1. Clone this repository ```bash git clone https://github.com/JaceyHuang/Gen3R cd Gen3R ``` 2. Install packages ```bash conda create -n gen3r python=3.11.2 -y conda activate gen3r pip install -r requirements.txt ``` 3. (**Important**) Download pretrained Gen3R checkpoint from [HuggingFace](https://huggingface.co/JaceyH919/Gen3R) to ./checkpoints ```bash sudo apt install git-lfs git lfs install git clone https://huggingface.co/JaceyH919/Gen3R ./checkpoints ``` - **Note:** At present, direct loading weights from HuggingFace via `from_pretrained("JaceyH919/Gen3R")` is not supported due to module naming errors. Please download the model checkpoint **locally** and load it using `from_pretrained("./checkpoints")`. ## 🚀 Inference Run the python script `infer.py` as follows to test the examples ```bash python infer.py \ --pretrained_model_name_or_path ./checkpoints \ --task 2view \ --prompts examples/2-view/colosseum/prompts.txt \ --frame_path examples/2-view/colosseum/first.png examples/2-view/colosseum/last.png \ --cameras free \ --output_dir ./results \ --remove_far_points ``` Some important inference settings below: - `--task`: `1view` for `First Frame to 3D`, `2view` for `First-last Frames to 3D`, and `allview` for `3D Reconstruction`. - `--prompts`: the text prompt string or the path to the text prompt file. - `--frame_path`: the path to the conditional images/video. For the `allview` task, this can be either the path to a folder containing all frames or the path to the conditional video. For the other two tasks, it should be the path to the conditional image(s). - `--cameras`: the path to the conditional camera extrinsics and intrinsics. We also provide basic trajectories by specifying this argument as `zoom_in`, `zoom_out`, `arc_left`, `arc_right`, `translate_up` or `translate down`. In this way, we will first use [VGGT](https://github.com/facebookresearch/vggt) to estimate the initial camera intrinsics and scene scale. To disable camera conditioning, set this argument to `free`. Note that the default resolution of our model is 560×560. If the resolution of the conditioning images or videos differs from this, we first apply resizing followed by center cropping to match the required resolution. ### More examples
Click to expand - **First Frame to 3D** ```bash python infer.py \ --pretrained_model_name_or_path ./checkpoints \ --task 1view \ --prompts examples/1-view/prompts.txt \ --frame_path examples/1-view/knossos.png \ --cameras zoom_out \ --output_dir ./results ``` - **First-last Frames to 3D** ```bash python infer.py \ --pretrained_model_name_or_path ./checkpoints \ --task 2view \ --prompts examples/2-view/bedroom/prompts.txt \ --frame_path examples/2-view/bedroom/first.png examples/2-view/bedroom/last.png\ --cameras examples/2-view/bedroom/cameras.json \ --output_dir ./results ``` - **3D Reconstruction**, note that `--cameras` are ignored in this task. ```bash python infer.py \ --pretrained_model_name_or_path ./checkpoints \ --task allview \ --prompts examples/all-view/prompts.txt \ --frame_path examples/all-view/garden.mp4 \ --output_dir ./results ```
## ✅ TODO - [x] Release inference code and checkpoints - [ ] Release online demo - [ ] Release training code & dataset preparation ## 🎓 Citation Please cite our paper if you find this repository useful: ```bibtex @misc{huang2026gen3r3dscenegeneration, title={Gen3R: 3D Scene Generation Meets Feed-Forward Reconstruction}, author={Jiaxin Huang and Yuanbo Yang and Bangbang Yang and Lin Ma and Yuewen Ma and Yiyi Liao}, year={2026}, eprint={2601.04090}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2601.04090}, } ```