# LFT **Repository Path**: dlfresher/LFT ## Basic Information - **Project Name**: LFT - **Description**: 简介简介简介简介简介简介 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-02-20 - **Last Updated**: 2022-05-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## LFT #### PyTorch implementation of "*Light Field Image Super-Resolution with Transformers*", IEEE SPL 2022. [pdf].

## Contributions: * **We make the first attempt to adapt Transformers to LF image processing, and propose a Transformer-based network for LF image SR.** * **We propose a novel paradigm (i.e., angular and spatial Transformers) to incorporate angular and spatial information in an LF.** * **With a small model size and low computational cost, our LFT achieves superior SR performance than other state-of-the-art methods.**

## Codes and Models: ### Requirement * **PyTorch 1.3.0, torchvision 0.4.1. The code is tested with python=3.6, cuda=9.0.** * **Matlab (For training/test data generation and performance evaluation)** ### Datasets **We used the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and test. Please first download our dataset via [Baidu Drive](https://pan.baidu.com/s/1mYQR6OBXoEKrOk0TjV85Yw) (key:7nzy) or [OneDrive](https://stuxidianeducn-my.sharepoint.com/:f:/g/personal/zyliang_stu_xidian_edu_cn/EpkUehGwOlFIuSSdadq9S4MBEeFkNGPD_DlzkBBmZaV_mA?e=FiUeiv), and place the 5 datasets to the folder **`./datasets/`**.** ### Train * **Run **`Generate_Data_for_Training.m`** to generate training data. The generated data will be saved in **`./data_for_train/`** (SR_5x5_2x, SR_5x5_4x).** * **Run **`train.py`** to perform network training. Example for training LFT on 5x5 angular resolution for 4x/2xSR:** ``` $ python train.py --model_name LFT --angRes 5 --scale_factor 4 --batch_size 4 $ python train.py --model_name LFT --angRes 5 --scale_factor 2 --batch_size 8 ``` * **Checkpoint will be saved to **`./log/`**.** ### Test * **Run **`Generate_Data_for_Test.m`** to generate test data. The generated data will be saved in **`./data_for_test/`** (SR_5x5_2x, SR_5x5_4x).** * **Run **`test.py`** to perform network inference. Example for test LFT on 5x5 angular resolution for 4x/2xSR:** ``` python test.py --model_name LFT --angRes 5 --scale_factor 4 \ --use_pre_pth True --path_pre_pth './pth/LFT_5x5_4x_epoch_50_model.pth' python test.py --model_name LFT --angRes 5 --scale_factor 2 \ --use_pre_pth True --path_pre_pth './pth/LFT_5x5_2x_epoch_50_model.pth' ``` * **The PSNR and SSIM values of each dataset will be saved to **`./log/`**.**

## Results: * **Quantitative Results**

* **Efficiency**

* **Visual Comparisons**

* **Angular Consistency**

* **Spatial-Aware Angular Modeling**


## Citiation **If you find this work helpful, please consider citing:** ``` @Article{LFT, author = {Liang, Zhengyu and Wang, Yingqian and Wang, Longguang and Yang, Jungang and Zhou, Shilin}, title = {Light Field Image Super-Resolution with Transformers}, journal = {IEEE Signal Processing Letters}, year = {2022}, } ```
## Contact **Any question regarding this work can be addressed to [zyliang@nudt.edu.cn](zyliang@nudt.edu.cn).**