# deeplearning **Repository Path**: chenxuan520/deeplearning ## Basic Information - **Project Name**: deeplearning - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-14 - **Last Updated**: 2025-05-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # deeplearning - 简单的C++深度学习框架 ## Author - **chenxuan** ## 项目结构 - `src/deeplearning` 为所需的所有头文件,包含即可使用 - `src/test` 为测试代码 ## 使用demo - `src/demo` 中有demo代码,可以参考 - mnist 为 mnist 数据集,使用代码demo默认配置下识别率约为91% ## Quick Start 1. `mkdir build;cmake ..;sudo make install` 安装 ```c++ #include "deeplearning/neural_network.h" using namespace deeplearning; int main() { NeuralNetwork network((std::vector() = {2, 1, 1})); std::vector> data = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; std::vector> target = {{0}, {0}, {1}, {1}}; auto print_func = [](const NeuralNetwork &network, double loss_sum) { std::cout << loss_sum << std::endl; }; auto rc = network.Train(data, target, print_func); if (rc != NeuralNetwork::SUCCESS) { std::cout << "Train failed" << std::endl; return -1; } std::cout << "Train success" << std::endl; std::vector test_data = {1, 1.2}, result; rc = network.Predict(test_data, result); if (rc != NeuralNetwork::SUCCESS) { std::cout << "Predict failed" << std::endl; return -1; } return 0; std::cout << "Predict: " << result[0] << std::endl; } ```