# caffe_train **Repository Path**: back-up/caffe_train ## Basic Information - **Project Name**: caffe_train - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-19 - **Last Updated**: 2024-05-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Caffe_train Our modified caffe for training multi-person pose estimator. The original caffe version is in July 2016. This repository at least runs on Ubuntu 14.04, OpenCV 2.4.10, CUDA 7.5/8.0, and CUDNN 5. The [full project repo](https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation) includes detailed training steps and the testing code in matlab, C++ and python. We add customized caffe layer for data augmentation: [cpm_data_transformer.cpp](https://github.com/CMU-Perceptual-Computing-Lab/caffe_train/blob/master/src/caffe/cpm_data_transformer.cpp), including scale augmentation e.g., in the range of 0.7 to 1.3, rotation augmentation, e.g., in the range of -40 to 40 degrees, flip augmentation and image cropping. This augmentation strategy makes the method capable of dealing with a large range of scales and orientations. You can set the augmentation parameters in [setLayers.py](https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation/blob/master/training/setLayers.py). Example data layer parameters in the [training prototxt](https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation/blob/master/training/example_proto/pose_train_test.prototxt) is: ``` layer { name: "data" type: "CPMData" top: "data" top: "label" data_param { source: "/home/zhecao/COCO_kpt/lmdb_trainVal" batch_size: 10 backend: LMDB } cpm_transform_param { stride: 8 max_rotate_degree: 40 visualize: false crop_size_x: 368 crop_size_y: 368 scale_prob: 1 scale_min: 0.5 scale_max: 1.1 target_dist: 0.6 center_perterb_max: 40 do_clahe: false num_parts: 56 np_in_lmdb: 17 } } ``` This project is licensed under the terms of the GPL v3 license [![License](https://img.shields.io/aur/license/yaourt.svg)](LICENSE). We will merge it with the caffe testing version (https://github.com/CMU-Perceptual-Computing-Lab/caffe_rtpose) later. ## Citation Please cite the paper in your publications if it helps your research: @article{cao2016realtime, title={Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields}, author={Zhe Cao and Tomas Simon and Shih-En Wei and Yaser Sheikh}, journal={arXiv preprint arXiv:1611.08050}, year={2016} } @inproceedings{wei2016cpm, author = {Shih-En Wei and Varun Ramakrishna and Takeo Kanade and Yaser Sheikh}, booktitle = {CVPR}, title = {Convolutional pose machines}, year = {2016} } # Caffe [![Build Status](https://travis-ci.org/BVLC/caffe.svg?branch=master)](https://travis-ci.org/BVLC/caffe) [![License](https://img.shields.io/badge/license-BSD-blue.svg)](LICENSE) Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center ([BVLC](http://bvlc.eecs.berkeley.edu)) and community contributors. Check out the [project site](http://caffe.berkeleyvision.org) for all the details like - [DIY Deep Learning for Vision with Caffe](https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p) - [Tutorial Documentation](http://caffe.berkeleyvision.org/tutorial/) - [BVLC reference models](http://caffe.berkeleyvision.org/model_zoo.html) and the [community model zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo) - [Installation instructions](http://caffe.berkeleyvision.org/installation.html) and step-by-step examples. [![Join the chat at https://gitter.im/BVLC/caffe](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/BVLC/caffe?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) Please join the [caffe-users group](https://groups.google.com/forum/#!forum/caffe-users) or [gitter chat](https://gitter.im/BVLC/caffe) to ask questions and talk about methods and models. Framework development discussions and thorough bug reports are collected on [Issues](https://github.com/BVLC/caffe/issues). Happy brewing! ## License and Citation Caffe is released under the [BSD 2-Clause license](https://github.com/BVLC/caffe/blob/master/LICENSE). The BVLC reference models are released for unrestricted use. Please cite Caffe in your publications if it helps your research: @article{jia2014caffe, Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor}, Journal = {arXiv preprint arXiv:1408.5093}, Title = {Caffe: Convolutional Architecture for Fast Feature Embedding}, Year = {2014} }