# DeepLab-Context **Repository Path**: back-up/DeepLab-Context ## Basic Information - **Project Name**: DeepLab-Context - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-26 - **Last Updated**: 2021-04-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## DeepLab ### Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of [Caffe](http://caffe.berkeleyvision.org). It combines densely-computed deep convolutional neural network (CNN) responses with densely connected conditional random fields (CRF). This distribution provides a publicly available implementation for the key model ingredients first reported in an [arXiv paper](http://arxiv.org/abs/1412.7062), accepted in revised form as conference publication to the ICLR-2015 conference. It also contains implementations for methods supporting model learning using only weakly labeled examples, described in a second follow-up [arXiv paper](http://arxiv.org/abs/1502.02734). Please consult and consider citing the following papers: @inproceedings{chen14semantic, title={Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs}, author={Liang-Chieh Chen and George Papandreou and Iasonas Kokkinos and Kevin Murphy and Alan L Yuille}, booktitle={ICLR}, url={http://arxiv.org/abs/1412.7062}, year={2015} } @article{papandreou15weak, title={Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation}, author={George Papandreou and Liang-Chieh Chen and Kevin Murphy and Alan L Yuille}, journal={arxiv:1502.02734}, year={2015} } Note that if you use the densecrf implementation, please consult and cite the following paper: @inproceedings{KrahenbuhlK11, title={Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials}, author={Philipp Kr{\"{a}}henb{\"{u}}hl and Vladlen Koltun}, booktitle={NIPS}, year={2011} } ### Performance DeepLab currently achieves 73.9% on the challenging PASCAL VOC 2012 image segmentation task -- see the [leaderboard](http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6). ### Pre-trained models We have released several trained models and corresponding prototxt files at [here](http://ccvl.stat.ucla.edu/software/deeplab/). Please check it for more model details. The best model among the released ones yields 73.6% on PASCAL VOC 2012 test set. ### Python wrapper requirements 1. Install wget library for python ``` sudo pip install wget ``` 2. Change DATA_ROOT to point to the PASCAL images 3. To use the mat_read_layer and mat_write_layer, please download and install [matio](http://sourceforge.net/projects/matio/files/matio/1.5.2/). ### Running the code ``` python run.py ``` ### FAQ Check [FAQ](http://ccvl.stat.ucla.edu/deeplab_faq/) if you have some problems while using the code.