# ATKT **Repository Path**: aplee/ATKT ## Basic Information - **Project Name**: ATKT - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-04 - **Last Updated**: 2021-12-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "[Enhancing Knowledge Tracing via Adversarial Training](https://dl.acm.org/doi/pdf/10.1145/3474085.3475554)" to be presented at ACM MM 2021 (**Oral**). ## Requirements ```sh PyTorch==1.7.0 Python==3.8.0 ``` ## Usage ### Cloning the repository ``` git clone git@github.com:xiaopengguo/ATKT.git cd ATKT ``` ### Running We evaluate our method on four datasets including **Statics2011**, **ASSISTments2009**, **ASSISTments2015** and **ASSISTments2017**. #### Statics2011 ``` python main.py --dataset 'statics' ``` #### ASSISTments2009 ``` python main.py --dataset 'assist2009_pid' ``` #### ASSISTments2015 ``` python main.py --dataset 'assist2015' ``` #### ASSISTments2017 ``` python main.py --dataset 'assist2017_pid' ``` Evaluated results (AUC scores) will be saved in **statics_test_result.txt**, **assist2009_pid_test_result.txt**, **assist2015_test_result.txt**, and **assist2017_pid_test_result.txt**, respectively. ## Acknowledgments Code and datasets are borrowed from [AKT](https://github.com/arghosh/AKT). Adversarial training implementation is inspired by [adversarial_training](https://github.com/WangJiuniu/adversarial_training). Early stopping implementation is modified from [early-stopping-pytorch](https://github.com/Bjarten/early-stopping-pytorch). ### Reference ``` @inproceedings{guo2021enhancing, title={Enhancing Knowledge Tracing via Adversarial Training}, author={Guo, Xiaopeng and Huang, Zhijie and Gao, Jie and Shang, Mingyu and Shu, Maojing and Sun, Jun}, booktitle={Proceedings of the 29th ACM International Conference on Multimedia}, pages={367--375}, year={2021} } ```