# NeuralMarker **Repository Path**: abunch/NeuralMarker ## Basic Information - **Project Name**: NeuralMarker - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-23 - **Last Updated**: 2025-09-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NeuralMarker ### [Project Page](https://drinkingcoder.github.io/publication/neuralmarker/) > NeuralMarker: A Framework for Learning General Marker Correspondence > [Zhaoyang Huang](https://drinkingcoder.github.io)\*, Xiaokun Pan\*, Weihong Pan, Weikang Bian, [Yan Xu](https://decayale.github.io/), Ka Chun Cheung, [Guofeng Zhang](http://www.cad.zju.edu.cn/home/gfzhang/), [Hongsheng Li](https://www.ee.cuhk.edu.hk/~hsli/) > SIGGRAPH Asia (ToG) 2022 ## TODO List - [x] Code release - [x] Models release - [x] Demo code release - [x] Dataset&Evaluation code release ## Environment ``` conda create -n neuralmarker conda activate neuralmarker conda install python=3.7 pip install -r requirements.txt ``` ## Dataset We use the MegaDepth dataset that preprocessed by [CAPS](https://github.com/qianqianwang68/caps), which is provided in this [link](https://drive.google.com/file/d/1-o4TRLx6qm8ehQevV7nExmVJXfMxj657/view?usp=sharing). We generate FlyingMarkers training set online. To genenerate FlyingMarkers validation set and test set, please execute: ``` python synthesis_datasets.py --root ./data/MegaDepth_CAPS/ --csv ./data/synthesis_validate_release.csv --save_dir ./data/flyingmarkers/validation python synthesis_datasets.py --root ./data/MegaDepth_CAPS/ --csv ./data/synthesis_validate_short.csv --save_dir ./data/validation/synthesis python synthesis_datasets.py --root ./data/MegaDepth_CAPS/ --csv ./data/synthesis_test_release.csv --save_dir ./data/flyingmarkers/test ``` The pretrained models, DVL-Markers benchmark, and data for demo are stored in [Google Drive](https://drive.google.com/drive/folders/1PZvFhx9P3TJZEiLowav-al0hhSH3hxrh?usp=share_link). ## Training We train our model on 6 V100 with batch size 2. ``` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 python train.py ``` ## DVL-Markers Evaluation Put the DVL-Markers dataset in `data`: ``` ├── data ├── DVL ├── D ├── V ├── L ├── marker ``` then run ``` bash eval_DVL.sh ``` The results will be saved in `output` ## FlyingMarkers Evaluation ``` python evaluation_FM.py ``` ## Demo for video demo, run ``` bash demo_video.sh ``` ## Acknowledgements We thank Yijin Li, Rensen Xu, and Jundan Luo for their help. We refer DGC-Net to generate synthetic image pairs.