# machine-learning-excercise-notebook-python **Repository Path**: Ky1eYang/machine-learning-excercise-notebook-python ## Basic Information - **Project Name**: machine-learning-excercise-notebook-python - **Description**: Andrew Ng机器学习对应Python Jupyter Notebook - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-08-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 机器学习Jupyter Notebook 吴恩达的Machine Learning课程是非常适合机器学习的初学者。 但其assignment使用了Matlab/Octave语言,这显然已经不适合当前机器学习/深度学习技术的发展。 此Repository将其所有课程assignment内容更新为Python版本,并采用Jupyter Notebook的形式,方便阅读和实验。 ## Jupyter Notebook (Python) * [1.linear_regression](1.linear_regression) * [2.logistic_regression](2.logistic_regression) * [3.multi-class_classification_and_neural_network](3.multi-class_classification_and_neural_network) * [4.nurual_network_back_propagation](4.nurual_network_back_propagation) * [5.bias_vs_variance](5.bias_vs_variance) * [6.svm](6.svm) * [7.kmeans_and_PCA](7.kmeans_and_PCA) * [8.anomaly_detection_and_recommendation](8.anomaly_detection_and_recommendation) ## 原始MATLAB版本 * [原始Assignment的MATLAB版本](original-machine-learning-MATLAB) ## 练习的描述PDF * [原始Assignment的文字描述](Machine_Learning_Assignment(ex1-ex8).pdf)(整合为一个PDF) 如有疑问,请Submit issue或Pull Request,谢谢 ## 更多 * [深度学习的Jupyter Notebooks](https://github.com/loveunk/deep-learning-exercise-notebook) * [机器学习、深度学习的学习路径及知识总结](https://github.com/loveunk/machine-learning-deep-learning-notes)