# PanoDiffusion **Repository Path**: ItalianSCLov/PanoDiffusion ## Basic Information - **Project Name**: PanoDiffusion - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-21 - **Last Updated**: 2024-06-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

PanoDiffusion: 360-degree Panorama Outpainting via Diffusion

Tianhao Wu · Chuanxia Zheng · Tat-Jen Cham

ICLR 2024

Paper | Project Page

Logo

## Setup ### Installation This code has been tested using python 3.8.5 with torch 1.7.0 & CUDA 11.0 on a V100. You need to first download the code and our [pretrained model](https://drive.google.com/file/d/1xSL_Qr7VYQRItxPYLw0C7qdcRUr2bhdq/view?usp=drive_link). It should include checkpoints for RGB/Depth VQ model, LDM and RefineNet model. ``` git clone https://github.com/PanoDiffusion/PanoDiffusion.git cd PanoDiffusion conda env create -f environment.yml ``` ### Play with PanoDiffusion We have already prepared some images and masks under 'example' folder. To test the model, you can simply run: ``` python inference.py \ --indir PanoDiffusion/example \ --outdir PanoDiffusion/example/output \ --ckpt PanoDiffusion/pretrain_model/ldm/ldm.ckpt \ --config PanoDiffusion/config/outpainting.yaml \ --refinenet_ckpt PanoDiffusion/pretrain_model/refinenet/refinenet.pth.tar or bash inference.sh ``` The results will be saved in the 'output' folder. Each time you run the code you will get a new outpainting result. # Citation If you find our code or paper useful, please cite our work. ```BibTeX @inproceedings{wu2023panodiffusion, title={PanoDiffusion: 360-degree Panorama Outpainting via Diffusion}, author={Wu, Tianhao and Zheng, Chuanxia and Cham, Tat-Jen}, booktitle={The Twelfth International Conference on Learning Representations}, year={2023} } ```