# Paper-Reading **Repository Path**: CodeAlbatross/Paper-Reading ## Basic Information - **Project Name**: Paper-Reading - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Paper-Reading Paper reading list in natural language processing. - [Paper-Reading](#paper-reading) - [Deep Learning in NLP](#deep-learning-in-nlp) - [Pre-trained Language Models](#pre-trained-language-models) - [Dialogue System](#dialogue-system) - [PTMs for Dialogue](#ptms-for-dialogue) - [Knowledge-driven Conversation](#knowledge-driven-conversation) - [Task-oriented Dialogue](#task-oriented-dialogue) - [Open-domain Dialogue](#open-domain-dialogue) - [Personalized Dialogue](#personalized-dialogue) - [Miscellaneous](#miscellaneous) - [Text Generation](#text-generation) - [Knowledge Representation & Reasoning](#knowledge-representation-and-reasoning) - [Text Summarization](#text-summarization) - [Topic Modeling](#topic-modeling) - [Machine Translation](#machine-translation) - [Question Answering](#question-answering) - [Reading Comprehension](#reading-comprehension) - [Image Captioning](#image-captioning) *** ## Deep Learning in NLP * **CNM**: "CNM: An Interpretable Complex-valued Network for Matching". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1420) [[code]](https://github.com/wabyking/qnn) * **word2vec**: "word2vec Parameter Learning Explained". arXiv(2016) [[PDF]](https://arxiv.org/pdf/1411.2738.pdf) * **Glove**: "GloVe: Global Vectors for Word Representation". EMNLP(2014) [[PDF]](https://www.aclweb.org/anthology/D14-1162.pdf) [[code]](https://github.com/stanfordnlp/GloVe) * **ELMo**: "Deep contextualized word representations". NAACL(2018) [[PDF]](https://www.aclweb.org/anthology/N18-1202) [[code]](https://github.com/allenai/bilm-tf) * **VAE**: "An Introduction to Variational Autoencoders". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1906.02691.pdf) * **Transformer**: "Attention is All you Need". NeurIPS(2017) [[PDF]](http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf) [[code-official]](https://github.com/tensorflow/tensor2tensor) [[code-tf]](https://github.com/Kyubyong/transformer) [[code-py]](https://github.com/jadore801120/attention-is-all-you-need-pytorch) * **Transformer-XL**: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1285) [[code]](https://github.com/kimiyoung/transformer-xl) * **ConvS2S**: "Convolutional Sequence to Sequence Learning". ICML(2017) [[PDF]](http://proceedings.mlr.press/v70/gehring17a/gehring17a.pdf) * **Survey on Attention**: "An Introductory Survey on Attention Mechanisms in NLP Problems". arXiv(2018) [[PDF]](https://arxiv.org/pdf/1811.05544.pdf) * **Additive Attention**: "Neural Machine Translation by Jointly Learning to Align and Translate". ICLR(2015) [[PDF]](https://arxiv.org/pdf/1409.0473.pdf) * **Multiplicative Attention**: "Effective Approaches to Attention-based Neural Machine Translation". EMNLP(2015) [[PDF]](https://www.aclweb.org/anthology/D15-1166) * **Memory Net**: "End-To-End Memory Networks". NeurIPS(2015) [[PDF]](http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf) * **Pointer Net**: "Pointer Networks". NeurIPS(2015) [[PDF]](http://papers.nips.cc/paper/5866-pointer-networks.pdf) * **Copying Mechanism**: "Incorporating Copying Mechanism in Sequence-to-Sequence Learning". ACL(2016) [[PDF]](https://www.aclweb.org/anthology/P16-1154) * **Coverage Mechanism**: "Modeling Coverage for Neural Machine Translation". ACL(2016) [[PDF]](https://www.aclweb.org/anthology/P16-1008) * **GAN**: "Generative Adversarial Nets". NeurIPS(2014) [[PDF]](http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf) * **SeqGAN**: "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient". AAAI(2017) [[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344/14489) [[code]](https://github.com/LantaoYu/SeqGAN) * **MacNet**: "MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models". NeurIPS(2018) [[PDF]](http://papers.nips.cc/paper/7848-macnet-transferring-knowledge-from-machine-comprehension-to-sequence-to-sequence-models.pdf) * **Graph2Seq**: "Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks". arXiv(2018) [[PDF]](https://arxiv.org/pdf/1804.00823.pdf) * **Pretrained Seq2Seq**: "Unsupervised Pretraining for Sequence to Sequence Learning". EMNLP(2017) [[PDF]](https://www.aclweb.org/anthology/D17-1039) * **Multi-task Learning**: "An Overview of Multi-Task Learning in Deep Neural Networks". arXiv(2017) [[PDF]](https://arxiv.org/pdf/1706.05098.pdf) * **Gradient Descent**: "An Overview of Gradient Descent Optimization Algorithms". arXiv(2016) [[PDF]](https://arxiv.org/pdf/1609.04747.pdf) ## Pre-trained Language Models * **PTMs**: "Pre-trained Models for Natural Language Processing: A Survey". arXiv(2020) [[PDF]](https://arxiv.org/pdf/2003.08271.pdf) * **Optimus**: "OPTIMUS: Organizing Sentences via Pre-trained Modeling of a Latent Space". arXiv(2020) [[PDF]](https://arxiv.org/pdf/2004.04092.pdf) [[code]](https://github.com/ChunyuanLI/Optimus) * **ERNIE-GEN**: "ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation". IJCAI(2020) [[PDF]](https://arxiv.org/pdf/2001.11314.pdf) [[code]](https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen) * **UniLM**: "Unified Language Model Pre-training for Natural Language Understanding and Generation". NeurIPS(2019) [[PDF]](http://papers.nips.cc/paper/9464-unified-language-model-pre-training-for-natural-language-understanding-and-generation.pdf) [[code]](https://github.com/microsoft/unilm) * **Poly-encoder**: "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scorings". ICLR(2020) [[PDF]](https://openreview.net/pdf?id=SkxgnnNFvH) * **ALBERT**: "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations". ICLR(2020) [[PDF]](https://openreview.net/pdf?id=H1eA7AEtvS) * **TinyBERT**: "TinyBERT: Distilling BERT for Natural Language Understanding". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1909.10351.pdf) [[code]](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT) * **Chinese BERT**: "Pre-Training with Whole Word Masking for Chinese BERT". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1906.08101.pdf) [[code]](https://github.com/ymcui/Chinese-BERT-wwm) * **SpanBERT**: "SpanBERT: Improving Pre-training by Representing and Predicting Spans". TACL(2020) [[PDF]](https://arxiv.org/pdf/1907.10529.pdf) [[code]](https://github.com/facebookresearch/SpanBERT) * **RoBERTa**: "RoBERTa: A Robustly Optimized BERT Pretraining Approach". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1907.11692.pdf) [[code]](https://github.com/pytorch/fairseq) * **ERNIE(Tsinghua)**: "ERNIE: Enhanced Language Representation with Informative Entities". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1139.pdf) [[code]](https://github.com/thunlp/ERNIE) * **ERNIE(Baidu)**: "ERNIE: Enhanced Representation through Knowledge Integration". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1904.09223.pdf) [[code]](https://github.com/PaddlePaddle/ERNIE) * **XLNet**: "XLNet: Generalized Autoregressive Pretraining for Language Understanding". NeurIPS(2019) [[PDF]](http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf) [[code]](https://github.com/zihangdai/xlnet) * **XLM**: "Cross-lingual Language Model Pretraining". NeurIPS(2019) [[PDF]](http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf) [[code]](https://github.com/facebookresearch/XLM) * **BERT**: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1423) [[code]](https://github.com/google-research/bert) ## Dialogue System ### PTMs for Dialogue * **ToD-BERT**: "ToD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogues". arXiv(2020) [[PDF]](https://arxiv.org/pdf/2004.06871.pdf) [[code]](https://github.com/jasonwu0731/ToD-BERT) :star::star::star::star: * **DialoGPT**: "DialoGPT : Large-Scale Generative Pre-training for Conversational Response Generation". ACL(2020) [[PDF]](https://arxiv.org/pdf/1911.00536.pdf) [[code]](https://github.com/microsoft/DialoGPT) :star::star::star: * **PLATO**: "PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable". ACL(2020) [[PDF]](https://arxiv.org/pdf/1910.07931.pdf) [[code]](https://github.com/PaddlePaddle/Research/tree/master/NLP/Dialogue-PLATO) :star::star::star::star: * **Guyu**: "An Empirical Investigation of Pre-Trained Transformer Language Models for Open-Domain Dialogue Generation". arXiv(2020) [[PDF]](https://arxiv.org/pdf/2003.04195.pdf) [[code]](https://github.com/lipiji/Guyu) :star::star::star: ### Knowledge-driven Conversation * **DuRecDial**: "Towards Conversational Recommendation over Multi-Type Dialogs". ACL(2020) [[PDF]](https://arxiv.org/pdf/2005.03954.pdf) [[code]](https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-DuRecDial) :star::star::star: * **KdConv**: "KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation". ACL(2020) [[PDF]](https://arxiv.org/pdf/2004.04100.pdf) [[data]](https://github.com/thu-coai/KdConv) :star::star::star: * **DuConv**: "Proactive Human-Machine Conversation with Explicit Conversation Goals". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1369) [[code]](https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2019-DuConv) :star::star::star: * **KBRD**: "Towards Knowledge-Based Recommender Dialog System". EMNLP(2019) [[PDF]](https://www.aclweb.org/anthology/D19-1189.pdf) [[code]](https://github.com/THUDM/KBRD) :star::star::star::star: * **ReDial**: "Towards Deep Conversational Recommendations". NeurIPS(2018) [[PDF]](http://papers.nips.cc/paper/8180-towards-deep-conversational-recommendations.pdf) [[data]](https://github.com/ReDialData/website) :star::star: * **Dual Fusion**: "Smarter Response with Proactive Suggestion: A New Generative Neural Conversation Paradigm". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0629.pdf) :star::star::star: ### Task-oriented Dialogue * **DF-Net**: "Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog". ACL(2020) [[PDF]](https://arxiv.org/pdf/2004.11019.pdf) [[code]](https://github.com/LooperXX/DF-Net) :star::star::star: * **MALA**: "MALA: Cross-Domain Dialogue Generation with Action Learning". AAAI(2020) [[PDF]](https://arxiv.org/pdf/1912.08442.pdf) :star::star::star: * **Task-Oriented Dialogue Systems**: "Learning to Memorize in Neural Task-Oriented Dialogue Systems". HKUST MPhil Thesis(2019) [[PDF]](https://arxiv.org/pdf/1905.07687.pdf) :star::star::star::star: * **GLMP**: "Global-to-local Memory Pointer Networks for Task-Oriented Dialogue". ICLR(2019) [[PDF]](https://arxiv.org/pdf/1901.04713.pdf) [[code]](https://github.com/jasonwu0731/GLMP) :star::star::star::star: * **KB Retriever**: "Entity-Consistent End-to-end Task-Oriented Dialogue System with KB Retriever". EMNLP(2019) [[PDF]](https://www.aclweb.org/anthology/D19-1013.pdf) [[data]](https://github.com/yizhen20133868/Retriever-Dialogue) :star::star::star: * **TRADE**: "Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1078) [[code]](https://github.com/jasonwu0731/trade-dst) :star::star::star::star: * **WMM2Seq**: "A Working Memory Model for Task-oriented Dialog Response Generation". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1258) :star::star:: * **Pretrain-Fine-tune**: "Training Neural Response Selection for Task-Oriented Dialogue Systems". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1536) [[data]](https://github.com/PolyAI-LDN/conversational-datasets) :star::star::star: * **Multi-level Mem**: "Multi-Level Memory for Task Oriented Dialogs". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1375) [[code]](https://github.com/DineshRaghu/multi-level-memory-network) :star::star::star::star: * **BossNet**: "Disentangling Language and Knowledge in Task-Oriented Dialogs ". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1126) [[code]](https://github.com/dair-iitd/BossNet) :star::star::star: * **SL+RL**: "Dialogue Learning with Human Teaching and Feedback in End-to-End Trainable Task-Oriented Dialogue Systems". NAACL(2018) [[PDF]](https://www.aclweb.org/anthology/N18-1187) :star::star::star: * **MAD**: "Memory-augmented Dialogue Management for Task-oriented Dialogue Systems". TOIS(2018) [[PDF]](https://arxiv.org/pdf/1805.00150.pdf) :star::star::star: * **TSCP**: "Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1133) [[code]](https://github.com/WING-NUS/sequicity) :star::star::star: * **Mem2Seq**: "Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1136) [[code]](https://github.com/HLTCHKUST/Mem2Seq) :star::star::star::star: * **DSR**: "Sequence-to-Sequence Learning for Task-oriented Dialogue with Dialogue State Representation". COLING(2018) [[PDF]](https://www.aclweb.org/anthology/C18-1320) :star::star: * **StateNet**: "Towards Universal Dialogue State Tracking". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1299) :star: * **Topic-Seg-Label**: "A Weakly Supervised Method for Topic Segmentation and Labeling in Goal-oriented Dialogues via Reinforcement Learning". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0612.pdf) [[code]](https://github.com/truthless11/Topic-Seg-Label) :star::star::star::star: * **AliMe**: "AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-2079) :star: * **KVR Net**: "Key-Value Retrieval Networks for Task-Oriented Dialogue". SIGDIAL(2017) [[PDF]](https://www.aclweb.org/anthology/W17-5506) [[data]](https://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-oriented-dialogue-dataset/) :star::star: ### Open-domain Dialogue * **RefNet**: "RefNet: A Reference-aware Network for Background Based Conversation". AAAI(2020) [[PDF]](https://arxiv.org/pdf/1908.06449.pdf) [[code]](https://github.com/ChuanMeng/RefNet) :star::star::star: * **GLKS**: "Thinking Globally, Acting Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation". AAAI(2020) [[PDF]](https://arxiv.org/pdf/1908.09528.pdf) [[code]](https://github.com/PengjieRen/GLKS) :star::star::star: * **HDSA**: "Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1360) [[code]](https://github.com/wenhuchen/HDSA-Dialog) :star::star::star::star: * **PostKS**: "Learning to Select Knowledge for Response Generation in Dialog Systems". IJCAI(2019) [[PDF]](https://www.ijcai.org/proceedings/2019/0706.pdf) :star::star: * **Two-Stage-Transformer**: "Wizard of Wikipedia: Knowledge-Powered Conversational agents". ICLR(2019) [[PDF]](https://arxiv.org/pdf/1811.01241.pdf) :star::star: * **CAS**: "Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1124) [[code]](https://github.com/jcyk/Skeleton-to-Response) :star::star::star: * **Edit-N-Rerank**: "Response Generation by Context-aware Prototype Editing". AAAI(2019) [[PDF]](https://arxiv.org/pdf/1806.07042.pdf) [[code]](https://github.com/MarkWuNLP/ResponseEdit) :star::star::star: * **HVMN**: "Hierarchical Variational Memory Network for Dialogue Generation". WWW(2018) [[PDF]](https://dl.acm.org/citation.cfm?doid=3178876.3186077) [[code]](https://github.com/chenhongshen/HVMN) :star::star::star: * **XiaoIce**: "The Design and Implementation of XiaoIce, an Empathetic Social Chatbot". arXiv(2018) [[PDF]](https://arxiv.org/pdf/1812.08989.pdf) :star::star::star: * **D2A**: "Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base". NeurIPS(2018) [[PDF]](http://papers.nips.cc/paper/7558-dialog-to-action-conversational-question-answering-over-a-large-scale-knowledge-base.pdf) [[code]](https://github.com/guoday/Dialog-to-Action) :star::star::star: * **DAIM**: "Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization". NeurIPS(2018) [[PDF]](http://papers.nips.cc/paper/7452-generating-informative-and-diverse-conversational-responses-via-adversarial-information-maximization.pdf) :star::star: * **MTask**: "A Knowledge-Grounded Neural Conversation Model". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710/16057) :star: * **GenDS**: "Flexible End-to-End Dialogue System for Knowledge Grounded Conversation". arXiv(2017) [[PDF]](https://arxiv.org/pdf/1709.04264.pdf) :star::star: * **Time-Decay-SLU**: "How Time Matters: Learning Time-Decay Attention for Contextual Spoken Language Understanding in Dialogues". NAACL(2018) [[PDF]](https://www.aclweb.org/anthology/N18-1194) [[code]](https://github.com/MiuLab/Time-Decay-SLU) :star::star::star::star: * **REASON**: "Dialog Generation Using Multi-turn Reasoning Neural Networks". NAACL(2018) [[PDF]](https://www.aclweb.org/anthology/N18-1186) :star::star::star: * **STD/HTD**: "Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1204) [[code]](https://github.com/victorywys/Learning2Ask_TypedDecoder) :star::star::star: * **CSF**: "Generating Informative Responses with Controlled Sentence Function". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1139) [[code]](https://github.com/kepei1106/SentenceFunction) :star::star::star: * **NKD**: "Knowledge Diffusion for Neural Dialogue Generation". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1138) [[data]](https://github.com/liushuman/neural-knowledge-diffusion) :star::star: * **DAWnet**: "Chat More: Deepening and Widening the Chatting Topic via A Deep Model". SIGIR(2018) [[PDF]](https://dl.acm.org/citation.cfm?doid=3209978.3210061) [[code]](https://sigirdawnet.wixsite.com/dawnet) :star::star::star: * **ZSDG**: "Zero-Shot Dialog Generation with Cross-Domain Latent Actions". SIGDIAL(2018) [[PDF]](https://www.aclweb.org/anthology/W18-5001) [[code]](https://github.com/snakeztc/NeuralDialog-ZSDG) :star::star::star: * **DUA**: "Modeling Multi-turn Conversation with Deep Utterance Aggregation". COLING(2018) [[PDF]](https://www.aclweb.org/anthology/C18-1317) [[code]](https://github.com/cooelf/DeepUtteranceAggregation) :star::star: * **Data-Aug**: "Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding". COLING(2018) [[PDF]](https://www.aclweb.org/anthology/C18-1105) [[code]](https://github.com/AtmaHou/Seq2SeqDataAugmentationForLU) :star::star: * **DC-MMI**: "Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1431) [[code]](https://github.com/abaheti95/DC-NeuralConversation) :star::star: * **cVAE-XGate/CGate**: "Better Conversations by Modeling, Filtering, and Optimizing for Coherence and Diversity". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1432) [[code]](https://github.com/XinnuoXu/CVAE_Dial) :star::star::star: * **DAM**: "Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1103) [[code]](https://github.com/baidu/Dialogue/tree/master/DAM) :star::star::star::star: * **SMN**: "Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-1046) [[code]](https://github.com/MarkWuNLP/MultiTurnResponseSelection) :star::star::star::star: * **MMI**: "A Diversity-Promoting Objective Function for Neural Conversation Models". NAACL-HLT(2016) [[PDF]](https://www.aclweb.org/anthology/N16-1014) [[code]](https://github.com/jiweil/Neural-Dialogue-Generation) :star::star: * **RL-Dialogue**: "Deep Reinforcement Learning for Dialogue Generation". EMNLP(2016) [[PDF]](https://www.aclweb.org/anthology/D16-1127) :star: * **TA-Seq2Seq**: "Topic Aware Neural Response Generation". AAAI(2017) [[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14563/14260) [[code]](https://github.com/LynetteXing1991/TA-Seq2Seq) :star::star: * **MA**: "Mechanism-Aware Neural Machine for Dialogue Response Generation". AAAI(2017) [[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14471/14267) :star::star: * **HRED**: "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models". AAAI(2016) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957/12160) [[code]](https://github.com/julianser/hed-dlg) :star::star: * **VHRED**: "A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues". AAAI(2017) [[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567/14219) [[code]](https://github.com/julianser/hed-dlg-truncated) :star::star: * **CVAE/KgCVAE**: "Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-1061) [[code]](https://github.com/snakeztc/NeuralDialog-CVAE) :star::star::star: * **ERM**: "Elastic Responding Machine for Dialog Generation with Dynamically Mechanism Selecting". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16316/16134) :star::star: * **Tri-LSTM**: "Augmenting End-to-End Dialogue Systems With Commonsense Knowledge". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16573/16030) :star::star: * **CCM**: "Commonsense Knowledge Aware Conversation Generation with Graph Attention". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0643.pdf) [[code]](https://github.com/tuxchow/ccm) :star::star::star::star::star: * **Retrieval+multi-seq2seq**: "An Ensemble of Retrieval-Based and Generation-Based Human-Computer Conversation Systems". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0609.pdf) :star::star::star: ### Personalized Dialogue * **PAML**: "Personalizing Dialogue Agents via Meta-Learning". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1542) [[code]](https://github.com/HLTCHKUST/PAML) :star::star::star: * **PCCM**: "Assigning Personality/Profile to a Chatting Machine for Coherent Conversation Generation". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0595.pdf) [[code]](https://github.com/qianqiao/AssignPersonality) :star::star::star::star: * **ECM**: "Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16455/15753) [[code]](https://github.com/tuxchow/ecm) :star::star::star::star: ### Miscellaneous * **CrossWOZ**: "CrossWOZ: A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset". TACL(2020) [[PDF]](https://arxiv.org/pdf/2002.11893.pdf) [[code]](https://github.com/thu-coai/CrossWOZ) :star::star::star: * **MultiWOZ**: "MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1547) [[code]](https://github.com/budzianowski/multiwoz) :star::star: * **Survey of Dialogue**: "A Survey on Dialogue Systems: Recent Advances and New Frontiers". SIGKDD Explorations(2017) [[PDF]](https://arxiv.org/pdf/1711.01731.pdf) :star: * **Survey of Dialogue Corpora**: "A Survey of Available Corpora For Building Data-Driven Dialogue Systems: The Journal Version". Dialogue & Discourse(2018) [[PDF]](http://dad.uni-bielefeld.de/index.php/dad/article/view/3690/3616) :star: * **Table-to-Text Generation (R,C,T)**: "Table-to-Text Generation with Effective Hierarchical Encoder on Three Dimensions (Row, Column and Time)". EMNLP(2019) [[PDF]](https://www.aclweb.org/anthology/D19-1310.pdf) [[code]](https://github.com/ErnestGong/data2text-three-dimensions) :star::star::star: * **LU-DST**: "Multi-task Learning for Joint Language Understanding and Dialogue State Tracking". SIGDIAL(2018) [[PDF]](https://www.aclweb.org/anthology/W18-5045) :star::star: * **MTask-M**: "Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models". IJCNLP(2018) [[PDF]](https://www.aclweb.org/anthology/I17-1061) :star: * **ADVMT**: "One “Ruler” for All Languages: Multi-Lingual Dialogue Evaluation with Adversarial Multi-Task Learning". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0616.pdf) :star: ## Text Generation * **Cascaded Generation**: "Cascaded Text Generation with Markov Transformers". arXiv(2020) [[PDF]](https://arxiv.org/pdf/2006.01112.pdf) [[code]](https://github.com/harvardnlp/cascaded-generation) :star::star::star::star: * **Sequence Generation**: "A Generalized Framework of Sequence Generation with Application to Undirected Sequence Models". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1905.12790.pdf) [[code]](https://github.com/nyu-dl/dl4mt-seqgen) :star::star::star::star: * **Sparse-Seq2Seq**: "Sparse Sequence-to-Sequence Models". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1146) [[code]](https://github.com/deep-spin/entmax) :star::star::star: ## Knowledge Representation and Reasoning * **GNTP**: "Differentiable Reasoning on Large Knowledge Bases and Natural Language". AAAI(2020) [[PDF]](https://arxiv.org/pdf/1912.10824.pdf) [[code]](https://github.com/uclnlp/gntp) :star::star::star: * **NTP**: "End-to-End Differentiable Proving". NeurIPS(2017) [[PDF]](http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf) [[code]](https://github.com/uclnlp/ntp) :star::star::star: ## Text Summarization * **BERTSum**: "Fine-tune BERT for Extractive Summarization". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1903.10318.pdf) [[code]](https://github.com/nlpyang/BertSum) :star::star::star: * **BERT-Two-Stage**: "Pretraining-Based Natural Language Generation for Text Summarization". arXiv(2019) [[PDF]](https://arxiv.org/pdf/1902.09243.pdf) :star::star: * **QASumm**: "Guiding Extractive Summarization with Question-Answering Rewards". NAACL(2019) [[PDF]](https://www.aclweb.org/anthology/N19-1264) [[code]](https://github.com/ucfnlp/summ_qa_rewards) :star::star::star::star: * **Re^3Sum**: "Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1015) [[code]](http://www4.comp.polyu.edu.hk/~cszqcao/data/IRSum_Resource.zip) :star::star::star: * **NeuSum**: "Neural Document Summarization by Jointly Learning to Score and Select Sentences". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1061) :star::star::star: * **rnn-ext+abs+RL+rerank**: "Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-1063) [[Notes]](https://www.aclweb.org/anthology/attachments/P18-1063.Notes.pdf) [[code]](https://github.com/ChenRocks/fast_abs_rl) :star::star::star::star::star: * **Seq2Seq+CGU**: "Global Encoding for Abstractive Summarization". ACL(2018) [[PDF]](https://www.aclweb.org/anthology/P18-2027) [[code]](https://github.com/lancopku/Global-Encoding) :star::star::star: * **ML+RL**: "A Deep Reinforced Model for Abstractive Summarization". ICLR(2018) [[PDF]](https://arxiv.org/pdf/1705.04304.pdf) :star::star::star: * **T-ConvS2S**: "Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1206) [[code]](https://github.com/shashiongithub/XSum) :star::star::star::star: * **RL-Topic-ConvS2S**: "A reinforced topic-aware convolutional sequence-to-sequence model for abstractive text summarization". IJCAI (2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0619.pdf) :star::star::star: * **GANsum**: "Generative Adversarial Network for Abstractive Text Summarization". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16238/16492) :star: * **FTSum**: "Faithful to the Original: Fact Aware Neural Abstractive Summarization". AAAI(2018) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16121/16007) :star::star: * **PGN**: "Get To The Point: Summarization with Pointer-Generator Networks". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-1099) [[code]](https://github.com/abisee/pointer-generator) :star::star::star::star::star: * **ABS/ABS+**: "A Neural Attention Model for Abstractive Sentence Summarization". EMNLP(2015) [[PDF]](https://www.aclweb.org/anthology/D15-1044) :star::star: * **RAS-Elman/RAS-LSTM**: "Abstractive Sentence Summarization with Attentive Recurrent Neural Networks". NAACL(2016) [[PDF]](https://www.aclweb.org/anthology/N16-1012) [[code]](https://github.com/facebookarchive/NAMAS) :star::star::star: * **words-lvt2k-1sent**: "Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond". CoNLL(2016) [[PDF]](https://www.aclweb.org/anthology/K16-1028) :star: ## Topic Modeling * **LDA**: "Latent Dirichlet Allocation". JMLR(2003) [[PDF]](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf) [[code]](https://github.com/blei-lab/lda-c) :star::star::star::star::star: * **Parameter Estimation**: "Parameter estimation for text analysis". Technical report (2005). [[PDF]](http://www.arbylon.net/publications/text-est2.pdf) :star::star::star: * **DTM**: "Dynamic Topic Models". ICML(2006) [[PDF]](https://dl.acm.org/citation.cfm?id=1143859) [[code]](https://github.com/blei-lab/dtm) :star::star::star::star: * **cDTM**: "Continuous Time Dynamic Topic Models". UAI(2008) [[PDF]](https://dslpitt.org/uai/papers/08/p579-wang.pdf) :star::star: * **iDocNADE**: "Document Informed Neural Autoregressive Topic Models with Distributional Prior". AAAI(2019) [[PDF]](https://aaai.org/ojs/index.php/AAAI/article/view/4616) [[code]](https://github.com/pgcool/iDocNADEe) :star::star::star::star: * **NTM**: "A Novel Neural Topic Model and Its Supervised Extension". AAAI(2015) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9303/9544) :star::star::star::star: * **TWE**: "Topical Word Embeddings". AAAI(2015) [[PDF]](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9314/9535) :star::star: * **RATM-D**: "Recurrent Attentional Topic Model". AAAI(2017)[[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14400/14203) :star::star::star::star: * **RIBS-TM**: "Don't Forget the Quantifiable Relationship between Words: Using Recurrent Neural Network for Short Text Topic Discovery". AAAI(2017) [[PDF]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14172/13900) :star::star::star: * **Topic coherence**: "Optimizing Semantic Coherence in Topic Models". EMNLP(2011) [[PDF]](https://www.aclweb.org/anthology/D11-1024) :star::star: * **Topic coherence**: "Automatic Evaluation of Topic Coherence". NAACL(2010) [[PDF]](https://www.aclweb.org/anthology/N10-1012) :star::star: * **DADT**: "Authorship Attribution with Author-aware Topic Models". ACL(2012) [[PDF]](https://www.aclweb.org/anthology/P12-2052) :star::star::star::star: * **Gaussian-LDA**: "Gaussian LDA for Topic Models with Word Embeddings". ACL(2015) [[PDF]](https://www.aclweb.org/anthology/P15-1077) [[code]](https://github.com/rajarshd/Gaussian_LDA) :star::star::star::star: * **LFTM**: "Improving Topic Models with Latent Feature Word Representations". TACL(2015) [[PDF]](https://transacl.org/ojs/index.php/tacl/article/view/582/158) [[code]](https://github.com/datquocnguyen/LFTM) :star::star::star::star::star: * **TopicVec**: "Generative Topic Embedding: a Continuous Representation of Documents". ACL (2016) [[PDF]](https://www.aclweb.org/anthology/P16-1063) [[code]](https://github.com/askerlee/topicvec) :star::star::star::star: * **SLRTM**: "Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves". arXiv(2016) [[PDF]](https://arxiv.org/pdf/1604.02038.pdf) :star::star: * **TopicRNN**: "TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency". ICLR(2017) [[PDF]](https://arxiv.org/pdf/1611.01702.pdf) [[code]](https://github.com/dangitstam/topic-rnn) :star::star::star::star::star: * **NMF boosted**: "Stability of topic modeling via matrix factorization". Expert Syst. Appl. (2018) [[PDF]](https://www.sciencedirect.com/science/article/pii/S0957417417305948?via%3Dihub) :star::star: * **Evaluation of Topic Models**: "External Evaluation of Topic Models". Australasian Doc. Comp. Symp. (2009) [[PDF]](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=471A5EE9D06BABFA4DC5CFD1E7F88A20?doi=10.1.1.529.7854&rep=rep1&type=pdf) :star::star: * **Topic2Vec**: "Topic2Vec: Learning distributed representations of topics". IALP(2015) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7451564) :star::star::star: * **L-EnsNMF**: "L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization". ICDM(2016) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7837872) [[code]](https://github.com/sanghosuh/lens_nmf-matlab) :star::star::star::star::star: * **DC-NMF**: "DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling". J. Global Optimization (2017) [[PDF]](https://link.springer.com/content/pdf/10.1007%2Fs10898-017-0515-z.pdf) :star::star::star: * **cFTM**: "The contextual focused topic model". KDD(2012) [[PDF]](https://dl.acm.org/citation.cfm?doid=2339530.2339549) :star::star::star: * **CLM**: "Collaboratively Improving Topic Discovery and Word Embeddings by Coordinating Global and Local Contexts". KDD(2017) [[PDF]](https://dl.acm.org/citation.cfm?doid=3097983.3098009) [[code]](https://github.com/XunGuangxu/2in1) :star::star::star::star::star: * **GMTM**: "Unsupervised Topic Modeling for Short Texts Using Distributed Representations of Words". NAACL(2015) [[PDF]](https://www.aclweb.org/anthology/W15-1526) :star::star::star::star: * **GPU-PDMM**: "Enhancing Topic Modeling for Short Texts with Auxiliary Word Embeddings". TOIS (2017) [[PDF]](https://dl.acm.org/citation.cfm?doid=3133943.3091108) :star::star::star: * **BPT**: "A Two-Level Topic Model Towards Knowledge Discovery from Citation Networks". TKDE (2014) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6494572) :star::star::star: * **BTM**: "A Biterm Topic Model for Short Texts". WWW(2013) [[PDF]](https://dl.acm.org/citation.cfm?doid=2488388.2488514) [[code]](https://github.com/xiaohuiyan/BTM) :star::star::star::star: * **HGTM**: "Using Hashtag Graph-Based Topic Model to Connect Semantically-Related Words Without Co-Occurrence in Microblogs". TKDE(2016) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7412726) :star::star::star: * **COTM**: "A topic model for co-occurring normal documents and short texts". WWW (2018) [[PDF]](https://link.springer.com/content/pdf/10.1007%2Fs11280-017-0467-8.pdf) :star::star::star::star: ## Machine Translation * **Multi-pass decoder**: "Adaptive Multi-pass Decoder for Neural Machine Translation". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1048) :star::star::star: * **Deliberation Networks**: "Deliberation Networks: Sequence Generation Beyond One-Pass Decoding". NeurIPS(2017) [[PDF]](http://papers.nips.cc/paper/6775-deliberation-networks-sequence-generation-beyond-one-pass-decoding.pdf) :star::star::star: * **KVMem-Attention**: "Neural Machine Translation with Key-Value Memory-Augmented Attention". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0357.pdf) :star::star::star::star: * **Interactive-Attention**: "Interactive Attention for Neural Machine Translation". COLING(2016) [[PDF]](https://www.aclweb.org/anthology/C16-1205) :star::star::star: ## Question Answering * **CFC**: "Coarse-grain Fine-grain Coattention Network for Multi-evidence Question Answering". ICLR(2019) [[PDF]](https://arxiv.org/pdf/1901.00603.pdf) :star::star: * **MTQA**: "Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question Answering". AAAI(2019) [[PDF]](https://aaai.org/ojs/index.php/AAAI/article/view/4593) [[code]](https://github.com/dengyang17/MTQA) :star::star::star: * **CQG-KBQA**: "Knowledge Base Question Answering via Encoding of Complex Query Graphs". EMNLP(2018) [[PDF]](https://www.aclweb.org/anthology/D18-1242) [[code]](http://202.120.38.146/CompQA/) :star::star::star::star::star: * **HR-BiLSTM**: "Improved Neural Relation Detection for Knowledge Base Question Answering". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-1053) :star::star::star: * **KBQA-CGK**: "An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge". ACL(2017) [[PDF]](https://aclweb.org/anthology/P17-1021) :star::star::star: * **KVMem**: "Key-Value Memory Networks for Directly Reading Documents". EMNLP(2016) [[PDF]](https://www.aclweb.org/anthology/D16-1147) :star::star::star: ## Reading Comprehension * **DecompRC**: "Multi-hop Reading Comprehension through Question Decomposition and Rescoring". ACL(2019) [[PDF]](https://www.aclweb.org/anthology/P19-1613) [[code]](https://github.com/shmsw25/DecompRC) :star::star::star::star: * **FlowQA**: "FlowQA: Grasping Flow in History for Conversational Machine Comprehension". ICLR(2019) [[PDF]](https://arxiv.org/pdf/1810.06683.pdf) [[code]](https://github.com/momohuang/FlowQA) :star::star::star::star::star: * **SDNet**: "SDNet: Contextualized Attention-based Deep Network for Conversational Question Answering". arXiv(2018) [[PDF]](https://arxiv.org/pdf/1812.03593.pdf) [[code]](https://github.com/microsoft/SDNet) :star::star::star::star: ## Image Captioning * **MLAIC**: "A Multi-task Learning Approach for Image Captioning". IJCAI(2018) [[PDF]](https://www.ijcai.org/proceedings/2018/0168.pdf) [[code]](https://github.com/andyweizhao/Multitask_Image_Captioning) :star::star::star: * **Up-Down Attention**: "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering". CVPR(2018) [[PDF]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf) :star::star::star::star: * **SCST**: "Self-critical Sequence Training for Image Captioning". CVPR(2017) [[PDF]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099614) :star::star::star::star: * **Recurrent-RSA**: "Pragmatically Informative Image Captioning with Character-Level Inference". NAACL(2018) [[PDF]](https://www.aclweb.org/anthology/N18-2070) [[code]](https://github.com/reubenharry/Recurrent-RSA) :star::star::star: