# PageIndex **Repository Path**: ATM006/PageIndex ## Basic Information - **Project Name**: PageIndex - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-04 - **Last Updated**: 2025-12-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
PageIndex Banner

VectifyAI%2FPageIndex | Trendshift

Reasoning-based RAG  β—¦  No Vector DB  β—¦  No Chunking  β—¦  Human-like Retrieval

🏠 Homepage  β€’   πŸ–₯️ Platform  β€’   πŸ”Œ MCP  β€’   πŸ“š API  β€’   πŸ’¬ Discord  β€’   βœ‰οΈ Contact 

---

πŸ“’ Recent Updates

**πŸš€ New Releases:** - [πŸ”₯ **PageIndex Chat**](https://chat.pageindex.ai): The first human-like document analyst agent platform, designed for professional long documents (also available via the [API](https://docs.pageindex.ai/quickstart)). - [**PageIndex MCP**](https://pageindex.ai/mcp): Bring PageIndex into Claude, Cursor, or any MCP-enabled agent. Chat with long PDFs in a reasoning-based, human-like way. **πŸ§ͺ Cookbooks:** * [**Vectorless RAG notebook**](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/pageindex_RAG_simple.ipynb): A minimal, hands-on example of reasoning-based RAG using **PageIndex** β€” no vectors, no chunking, and human-like retrieval. * [Vision-based Vectorless RAG notebook](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/vision_RAG_pageindex.ipynb): Experience OCR-free document understanding through PageIndex’s visual retrieval workflow that retrieves and reasons directly over PDF page images. **πŸ“œ Articles:** * ⭐ [**The PageIndex Overview**](https://pageindex.ai/blog/pageindex-intro): Introduces the PageIndex framework β€” an *agentic, in-context* **tree index** that enables LLMs to perform **reasoning-based, human-like retrieval** over long documents, without vector DB or chunking. * [Do We Still Need OCR?](https://pageindex.ai/blog/do-we-need-ocr): Explores how vision-based, reasoning-native RAG challenges the traditional OCR pipeline, and why the future of document AI might be *vectorless* and *vision-based*.
# πŸ“‘ Introduction to PageIndex Are you frustrated with vector database retrieval accuracy for long professional documents? Traditional vector-based RAG relies on semantic *similarity* rather than true *relevance*. But **similarity β‰  relevance** β€” what we truly need in retrieval is **relevance**, and that requires **reasoning**. When working with professional documents that demand domain expertise and multi-step reasoning, similarity search often falls short. Inspired by AlphaGo, we propose **[PageIndex](https://vectify.ai/pageindex)** β€” a **_vectorless_**, **reasoning-based RAG** system that builds a *hierarchical tree index* for long documents and *reasons* over that index for *retrieval*. It simulates how **human experts** navigate and extract knowledge from complex documents through **tree search**, enabling LLMs to *think* and *reason* their way to the most relevant document sections. It performs retrieval in two steps: 1. Generate a "Table-of-Contents" **tree structure index** of documents 2. Perform reasoning-based retrieval through **tree search**
### 🧩 Features Compared to traditional *vector-based RAG*, **PageIndex** features: - **No Vector DB**: Uses document structure and LLM reasoning for retrieval, instead of vector search. - **No Chunking**: Documents are organized into natural sections, not artificial chunks. - **Human-like Retrieval**: Simulates how human experts navigate and extract knowledge from complex documents. - **Transparent Retrieval Process**: Retrieval based on reasoning β€” traceable and interpretable. Say goodbye to approximate vector search ("vibe retrieval"). PageIndex powers a reasoning-based RAG system that achieved [98.7% accuracy](https://github.com/VectifyAI/Mafin2.5-FinanceBench) on FinanceBench, demonstrating **state-of-the-art** performance in professional document analysis (see our [blog post](https://vectify.ai/blog/Mafin2.5) for details). ### βš™οΈ Deployment Options - πŸ› οΈ Self-host β€” run locally with this open-source repo. - ☁️ **Cloud Service** β€” try instantly with our πŸ–₯️ [Platform](https://chat.pageindex.ai/), πŸ”Œ [MCP](https://pageindex.ai/mcp) or πŸ“š [API](https://docs.pageindex.ai/quickstart). ### πŸ§ͺ Quick Hands-on - Try the [_**Vectorless RAG Notebook**_](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/pageindex_RAG_simple.ipynb) β€” a *minimal*, hands-on example of reasoning-based RAG using **PageIndex**. - Experiment with the [*Vision-based Vectorless RAG*](https://github.com/VectifyAI/PageIndex/blob/main/cookbook/vision_RAG_pageindex.ipynb) β€” no OCR; a minimal, reasoning-native RAG pipeline that works directly over page images.
Open in Colab: Vectorless RAG    Open in Colab: Vision RAG
--- # 🌲 PageIndex Tree Structure PageIndex can transform lengthy PDF documents into a semantic **tree structure**, similar to a _"table of contents"_ but optimized for use with Large Language Models (LLMs). It's ideal for: financial reports, regulatory filings, academic textbooks, legal or technical manuals, and any document that exceeds LLM context limits. Here is an example output. See more [example documents](https://github.com/VectifyAI/PageIndex/tree/main/tests/pdfs) and [generated trees](https://github.com/VectifyAI/PageIndex/tree/main/tests/results). ```jsonc ... { "title": "Financial Stability", "node_id": "0006", "start_index": 21, "end_index": 22, "summary": "The Federal Reserve ...", "nodes": [ { "title": "Monitoring Financial Vulnerabilities", "node_id": "0007", "start_index": 22, "end_index": 28, "summary": "The Federal Reserve's monitoring ..." }, { "title": "Domestic and International Cooperation and Coordination", "node_id": "0008", "start_index": 28, "end_index": 31, "summary": "In 2023, the Federal Reserve collaborated ..." } ] } ... ``` You can either generate the PageIndex tree structure with this open-source repo, or try our [API](https://docs.pageindex.ai/quickstart) service. --- # πŸ“¦ Package Usage You can follow these steps to generate a PageIndex tree from a PDF document. ### 1. Install dependencies ```bash pip3 install --upgrade -r requirements.txt ``` ### 2. Set your OpenAI API key Create a `.env` file in the root directory and add your API key: ```bash CHATGPT_API_KEY=your_openai_key_here ``` ### 3. Run PageIndex on your PDF ```bash python3 run_pageindex.py --pdf_path /path/to/your/document.pdf ```
Optional parameters
You can customize the processing with additional optional arguments: ``` --model OpenAI model to use (default: gpt-4o-2024-11-20) --toc-check-pages Pages to check for table of contents (default: 20) --max-pages-per-node Max pages per node (default: 10) --max-tokens-per-node Max tokens per node (default: 20000) --if-add-node-id Add node ID (yes/no, default: yes) --if-add-node-summary Add node summary (yes/no, default: yes) --if-add-doc-description Add doc description (yes/no, default: yes) ```
Markdown support
We also provide a markdown support for PageIndex. You can use the `-md_path` flag to generate a tree structure for a markdown file. ```bash python3 run_pageindex.py --md_path /path/to/your/document.md ``` > Notice: in this function, we use "#" to determine node heading and their levels. For example, "##" is level 2, "###" is level 3, etc. Make sure your markdown file is formatted correctly. If your Markdown file was converted from a PDF or HTML, we don’t recommend using this function, since most existing conversion tools cannot preserve the original hierarchy. Instead, use our [PageIndex OCR](https://pageindex.ai/blog/ocr), which is designed to preserve the original hierarchy, to convert the PDF to a markdown file and then use this function.
--- # πŸ“ˆ Case Study: SOTA on Finance QA Benchmark [Mafin 2.5](https://vectify.ai/mafin) is a reasoning-based RAG system for financial document analysis, powered by **PageIndex**. It achieved a state-of-the-art [**98.7% accuracy**](https://vectify.ai/blog/Mafin2.5) on the [FinanceBench](https://arxiv.org/abs/2311.11944) benchmark β€” significantly outperforming traditional vector-based RAG systems. PageIndex's hierarchical indexing enabled precise navigation and extraction of relevant content from complex financial reports, such as SEC filings and earnings disclosures. πŸ‘‰ Explore the full [benchmark results](https://github.com/VectifyAI/Mafin2.5-FinanceBench) and our [blog post](https://vectify.ai/blog/Mafin2.5) for detailed comparisons and performance metrics.
--- # 🧭 Resources * πŸ“– [Tutorials](https://docs.pageindex.ai/doc-search): practical guides and strategies, including *Document Search* and *Tree Search*. * πŸ§ͺ [Cookbooks](https://docs.pageindex.ai/cookbook/vectorless-rag-pageindex): hands-on, runnable examples and advanced use cases. * πŸ“ [Blog](https://pageindex.ai/blog): technical articles, research insights, and product updates * βš™οΈ [MCP setup](https://pageindex.ai/mcp#quick-setup) & [API docs](https://docs.pageindex.ai/quickstart): integration details and configuration options. --- ### ⭐ Support Us Leave a star if you like our project. Thank you!

### Connect with Us [![Twitter](https://img.shields.io/badge/Twitter-000000?style=for-the-badge&logo=x&logoColor=white)](https://x.com/VectifyAI)  [![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/company/vectify-ai/)  [![Discord](https://img.shields.io/badge/Discord-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.com/invite/VuXuf29EUj)  [![Contact Us](https://img.shields.io/badge/Contact_Us-3B82F6?style=for-the-badge&logo=envelope&logoColor=white)](https://ii2abc2jejf.typeform.com/to/tK3AXl8T) --- Β© 2025 [Vectify AI](https://vectify.ai)